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Chapter 1

ABC: What the Alphabet
Looks Like When D Through Z
are Eliminated1,2

1.1 The Vomitous Beginning of a Beautiful

Conjecture

Of all of the conjectures in this book, the ABC Conjecture is by far the least
historic. Unlike 150-year old Riemann Hypothesis or the Twin Prime Conjec-
ture whose age is measured in millennia, the ABC Conjecture was discovered
in the rather recent and mundane year of 1985. Of course, an important open
conjecture that was formed in 1985 is still a rather impressive proposition,
as such a conjecture can then be said to have stumped mathematicians for
almost 30 years. On the other hand, since the ABC is younger than I am, I
can’t really wax poetic about how the world was ”a very different place when
this conjecture was formed” unless I want to make myself feel really, really
old. So that’s kind of disappointing.

However, whatever gravitas the conjecture lacks because of its youthful
age is no match for the amount of gravitas it lacks in how it was discovered.

1This is a variant of an old joke by former comedian Mitch Hedberg. RIP, Mitch
2Incidentally, every single exposition about the ABC Conjecture involves some variant

of the joke ”It’s as easy as ABC!” I mean, every single exposition does this. Apparently,
there are no other jokes that can possibly be made about the first three letters of the
alphabet.
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CHAPTER 1. ABC 3

Yes, the ABC Conjecture is, to date, the only major math conjecture known
to have been discovered at a cocktail party.

You see, mathematicians David Masser and Joseph Oesterle were at a
cocktail party3, drunk out of their minds4, when they began to discuss a
recent paper that had written the year prior about polynomials5. Masser and
Oesterle started to think about what would happen if you took the paper and
replaced every mention of ”polynomial” with ”integer”. This took a while
because Masser couldn’t see straight and Oesterle was loudly singing Abba
songs, but they felt that it was likely important, so they soldiered through
it. Finally, after a bit of discussion and a lot of thought, it was Masser who,
despite his inebriation, saw the light and realized what it was the duo could
accomplish with this simple idea; in one of the memorable moments in math
history, Masser then turned to his colleague said, ”Hey Oesterle! BLAAGH!”
and threw up all over Oesterle’s shirt.

After cleaning up (and sobering up) a bit, Masser clarified that what he
was going to say was, ”Using the ideas from the paper, we should come up
with a simple proposition about integers that would change the way we look
at additive relations between integers and completely revolutionize the study
of Diophantine equations. Also, BLAAGH!”, and it was back to the mop
and paper towels.

Once round two of cleanup had been done, Masser and Oesterle set to
work. Realizing that Masser’s idea was a good one, the pair sat down and
hammered6 out a stunning conjecture, outlining a fundamental relation be-
tween integers in some very straightforward equations that had somehow
eluded mathematicians since the dawn of time. The equations they investi-
gated were so simple that it was clear that there would be immediate appli-
cations throughout all of mathematics.

Then, for good measure, Masser threw up all over the page once more.

3This part is actually true
4This part might be slightly less true.
5Yeah, we mathematicians know how to party.
6Hammered, indeed.
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1.2 Hold On - How Simple are We Talking

Here?

The conjecture applies to nearly every equation of the form

a + b = c.

That’s why it’s called the ABC Conjecture.

1.3 Oh. Yeah, That’s Pretty Simple.

See what I mean? That equation is bound to show up in quite a few places.



Chapter 2

Radical! Mason and Oesterle’s
Excellent Adventure Continues1

As you may have gathered from pretty much every word written in every
chapter before this one, number theorists love primes. Like, really love
primes, to the point where a restraining order might be required. That’s
just how we roll. So when we see an integer just sitting there like this:

600

our first instinct is to say , ”Let’s split the integer into prime factors!”:

600 = 2 · 2 · 2 · 3 · 5 · 5,

or, better yet,
600 = 23 · 3 · 52.

You’d think that this would be enough prime-related carnage to satisfy our
compulsion. Sometimes, it is. Other times, however, we might say, ”No one
cares about these exponents. All we want are primes! PRIMES!” In fact, we
even have a function, called the radical (denoted rad(x), so named because
”Radical!” was considered a cool thing to say when the conjecture was made
in 1985), where we take the prime factorization and strip the exponents:

1I think I may have left a few of my younger readers behind on the ”Bill and Ted’s
Excellent Adventure” reference here. Well, too bad. The older readers are still scratching
their heads at the Ke$ha reference from the Birch-Swinnnerton-Dyer section, so you can
call it even.
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rad(600) = 2 63 · 3 · 562 = 2 · 3 · 5.

Note that 2 · 3 · 5 = 30, so we could write

rad(600) = 30

to get the same info across.
Want another example? Sure you do! Here’s one:

112 = 24 · 7,

so
rad(112) = 2 64 · 7 = 14.

That was awesome.
Note that the radical of a number is quite often much smaller than the

original number. Of course, this isn’t always the case:

rad(30) = 2 · 3 · 5 = 30,

rad(17) = 17,

but it’s true often enough to be a useful tool in simplifying things consider-
ably. In fact, the ABC Conjecture is based upon this idea:

General Question: In general, how much smaller is the radical of a number
than the number itself?

Are most numbers going to be unaffected (like 30)? Are they going to be
significantly smaller, like 112? Are they somewhere in between? Why is this
function considered so ”radical”, anyway? And why do we use ”radical” to
mean ”awesome!”? And what about the phrase ”That’s radicool!”? Wasn’t
that a stupid expression? Who came up with that one? And why? Oh, and
remember ”Don’t have a cow, man!”? What ever happened to that phrase?

These are all very important questions, so a conjecture that merely ad-
dressed these questions would have been enough for most people. However,
Masser and Oesterle are not most people. They realized that they could come
up with a way to merge these questions with other ideas in number theory
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and make an even more ambitious and sweeping conjecture with broad im-
plications across mathematics. Like midgets at a shooting range for really
tall people, Masser and Oesterle decided that it was time to aim high....



Chapter 3

Towards A Meaningful ABC

3.1 Fixing the Conjecture So That Masser

Can Throw Up On It Again

When Masser and Oesterle stumbled upon these questions, they realized that
it was a golden opportunity to not only say something interesting about the
radical function but also to say something about equations themselves.

To explain, let’s go back to the equation we discussed earlier:

a + b = c.

Here, I’m going to require that a, b, and c all be positive integers so
that we don’t have to deal with negatives or zeroes or fractions or imaginary
numbers or radicals or whatever else because, seriously, the hell with that
crap. The numbers here will be whole, they will be positive, and they will
be fantastic.

In fact, I’m going to assume that a, b, and c don’t have any common
factors (besides 1), because numbers in an equation having common factors
is like the mathematical version of inbreeding; it’s disgusting, and everything
that comes out is dumber because of it. And that’s all I’ll say about that.

Now that we’ve gotten those unpleasantries out of the way, we have the
following question:

New, Improved ABC Question: Take the equation from above:

a + b = c,
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where a, b, and c don’t have any common factors. How to a, b, and c compare
to rad(abc)?

Now, why does this help, apart from the fact that we’ve eliminated the
unsavory practice of inbreeding in mathematics? Well, it turns out that this
is a really, really clever way to take an average; although it’s entirely possible
that one of the numbers in the equation might be something like 21320 that
gets a pretty big haircut from the radical function1, it’s pretty unlikely that
all three of the numbers are going to be that way. Basically, it’s the number
theory version of taking a random poll; 21320 might have a strong opinion
on the radical function, but having two other numbers in the sample help
counterbalance 21320 and give a more reasoned answer.2

Now, you might be wondering, ”In that case, why did you only include
three numbers? Most polls have 500 numbers in their sample. Why don’t
you set up an equation with more variables?”

If you asked this to a number theorist, he or she would probably tell you
that three turns out to be enough variables to say something interesting; in
fact, he would say, having 500 variables would just be overkill because the
result probably wouldn’t get that much better. But really, we’re just lazy.
So...three variables it is.

What’s even better about this method, though, is it takes the radical and
somehow relates it to equations. This means that we can now apply all of
the stuff we know about primes and radicals to cases where we’re trying to
solve equations. As you might be aware, mathematics has many equations,
so this will help out quite a bit.

1This comment is much funnier if you envision 21320 as 2 with a giant afro.
2Now, you can see why we eliminated numbers that have common factors; they would

all be affected similarly by the radical function. For instance, if we took a, b, and c to be
something like

21320 · 3 + 21320 · 4 = 21320 · 7,

you can see that all three of the numbers would be decimated by the radical function.
This would be the mathematical equivalent of taking a poll on presidential approval and

choosing all of your participants from Barack Obama’s immediate family.
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3.2 The Almost-Conjecture

So what can we say about the conjecture? Well, we almost have the following:

Thing That’s Not Quite True But is Probably Really Close: Take
a + b = c like before. Then the following isn’t actually always true but seems
to usually be the case:

c < rad(abc).

This actually looks like it’s true most of the time (i.e. for most a, b, and c
that you plug in), which is at least a start. The problem is that ”most of the
time” doesn’t cut it in mathematics; in our field, ”almost true” is a synonym
for ”false”3, and if we’re going to come up with a conjecture that is going to
change the face of mathematics, it would probably help if said conjecture is,
you know, not false.

3.3 The Almost Conjecture, But With Less

”Almost” and More ”Conjecture”

So, how do we fix this and make it true all of the time?
Well, one way is to raise the right hand side to a power:

c < rad(abc)102562

No, no, a smaller power than that.

c < rad(abc)2

Yeah, that’s better. In fact, we can call that something like the ABC
conjecture:

Part of the ABC Conjecture: Let a, b, and c are positive integers that
don’t do anything creepy like possess common factors. Oh, and a + b = c. If
all of that stuff is true then

3Examples of a, b, and c for which this is false are actually rather hard to come by. See
if you can come up with one! It’ll be fun! Whoo-hoo! (If you don’t want to bother, or if
you’re stumped, one possible answer is at the bottom of the next page)
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c < rad(abc)2.

Now, this is probably correct (which is why we called it a conjecture
instead of something like ”Bad Guess”), but it’s also probably overkill, akin
to washing the dishes with a fire hose. Squaring the right hand side is a
powerful operation that makes the term on the right much, much bigger
(after all, we said that an exponent of 1 would work for almost all a, b, and
c), and we’d like to know if we can get something smaller than 2 in the
exponent.

Well, can we? For instance, let’s say we wanted to lower the exponent
from 2 to 1.5. Could we do that?

Um, sort of...

Another Part of the ABC Conjecture: Let a, b, and c be good like
before. IF C IS SUFFICIENTLY LARGE then

c < rad(abc)1.5.

Did you happen to notice that I slipped in a few words there? I tried to
be subtle, but my caps lock key got stuck. Oh well.

Anyway, the new words say that this isn’t true for every a, b, and c, but
once c passes a certain threshold, it’ll always be true.

It’s worth noting that we have absolutely no idea where this threshold
is. We know that it’s pretty large (we’ve computed some pretty big numbers
where the equation doesn’t yet work), but as far as how large we’re talk-
ing.....no clue. However, even knowing that such a threshold exists would
be a big deal; one of the difficulties of math is that we’re always trying to
show that something is true for every possible number (all the way out to
infinity), so if we knew that there was a (finite) threshold where we could
stop checking things, that would seriously cut down on the work we have to
do and would therefore be awesome.

3An answer from the previous page: 5 + 27 = 32. Note that 27 = 33 and 32 = 25, so

rad(5 ∗ 27 ∗ 32) = 5 ∗ 363 ∗ 265 = 30,

and 30 < 32.
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3.4 Movin’ on Down: What The Jefferson’s

Theme Song Would Be if You Turned

The TV Upside Down4

So, throughout the section, we’ve been working on making that exponent
smaller and smaller. Now that we’ve got this adjustment where we say ”for
sufficiently large c” and everything is magically better, you might be won-
dering how much farther we can get this exponent to go. Well, the bad news
is that we still can’t get it all the way down to 1 - no matter how high the
threshold, you can always find an a, b, and c that don’t work where c is bigger
than your threshold. The good news, though, is that we can get really, really
close to 1. In fact, we can get about as close to 1 as you want:

The Full ABC Conjecture: Let a, b, and c be good like before, and let r
be a positive number that’s as close to 0 as you like (without being 0). If c is
sufficiently large then

c < rad(abc)1+r.

Of course, what we mean by sufficiently large will depend on which r we’ve
chosen; the threshold we pick for r = 0.5 will be way too small for r =
0.05, and what works for r = 0.05 probably won’t work for r = 0.0001. In
effect, the ABC Conjecture is not one conjecture but tons and tons of mini-
conjectures; for each possible r, you have to both prove the conjecture and
find the threshold for which it works. That said, we don’t have to get them
all at once; if we could prove this for any choice of r, it would be a huge
advance in mathematics and would give us a lot of new information. Plus,
Masser would probably throw up at the celebration party.

4Viewer discretion is advised.



Chapter 4

Current State Of Affairs:
Where We Are and Things
That The ABC Conjecture
Would Prove

4.1 How Close Are We to Proving the ABC?

Not very. Remember how the statement was that for sufficiently large c,

c < rad(abc)1+r?

Well, most of the results we’ve gotten have looked more like this:

c < erad(abc)
1+r

.

That’s not very good. Any time you’re raising e to a power, you’re making
things a whole lot bigger.1

In fact, this part’s kind of depressing, let’s go ahead and skip to the things
that the ABC Conjecture would prove. That’s way more exciting.

1I should add a note here that in September of 2012, Shin Mochizuki announced a
possible proof of the theorem. The proof is impressive, and it looks promising (and even
if it’s wrong, it’s still extremely interesting), but many, many, many proofs of the ABC
have been proposed so far and none have been correct, so I’ll hold off on the coronation
for now.
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4.2 Things That The ABC Conjecture Would

Prove

Much like most of the other conjectures in this book, a proof of the ABC
Conjecture would have quite a few effects in other places in number theory.
Examples include:

1.) Fermat’s Last Theorem. For many years, Fermat’s Last Theorem
was one of the most popular unsolved problems in all of mathematics. I think
I’ve already mentioned it in several places in this book, but it bears stating
in some detail here because a.) it’s important, and b.) it’s one of the most
obvious motivations for studying the ABC Conjecture.

As the story goes, when mathematicians were studying Fermat’s notes
and works after he died in 1665, they found a curious comment scribbled in
the margin of Fermat’s copy of Diophantus’ Arithmetica:

xn + yn = zn has no solutions if n > 2

and, underneath that,

I have a truly marvelous proof of this proposition which this margin is too
narrow to contain.

This simple statement set off a three century search for a proof of this
proposition, as the conjecture that would go on to be called Fermat’s Last
Theorem stumped many of the greatest minds in the history of number the-
ory. It was finally solved in 1994 by Andrew Wiles, who wrote a 192 page
proof of the theorem, then discovered that the 192 pages weren’t quite enough
to actually prove the theorem, and finally released an additional 12-page pa-
per that completed the proof. Wiles’ proof depended on a method known as
”the kitchen sink”, where he pretty much took everything in modern mathe-
matics that wasn’t bolted down and threw it at the problem and eventually
got things to work. It’s a very brute force-ish proof - effective, but not
efficient by any means2.

2Incidentally, one of the great questions in math history is, ”Did Fermat actually have
a solution to this problem?” Obviously, the method of proof that Andrew Wiles used was
not available to Fermat at the time, so the question is really whether Fermat had a simple,
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On the other hand, if the ABC were true, Fermat’s Last Theorem could
be easily proven in less than a page. That’s right, I said less than a page.
It’s that powerful.

Other results include....

2.) Progress on Wieferich’s Primes. Yeah, there’s that. And

2.) Szpiro’s Conjecture About Elliptic Curves. Is a nice one too.
And

3.) A Result about Class Numbers is something I would bother ex-
plaining, except that....

4.) Seriously, FERMAT’S F*****G LAST THEOREM. I mean, I
don’t even know why I should bother with the other results. A proof of the
ABC Conjecture turns the most difficult problem of the last 300 years into
an undergraduate classroom exercise. I think I should be able to just stop
here.

In fact, I will3.

low-tech proof of this problem. I’m firmly in the ”No” camp for two reasons: a.) Fermat
is known to have stated theorems that he couldn’t actually prove (we know this because
he occasionally stated ”theorems” that turned out to be false), and b.) if there actually
was a simple solution, Euler probably would have figured it out.

3A full list of implications of the ABC Conjecture is available at

http://www.math.unicaen.fr/˜nitaj/abc.html.

Also available at that website is a blinding, puke-green color background and flashing
fonts that make the webpage look like it came straight from 1995.



Chapter 5

Appendix: Why ABC gives us
Fermat’s Last Theorem

Earlier, I made a statement that ABC would be able to prove Fermat’s Last
Theorem very, very easily. You might remember it - it was a statement
laced with expletives and stuff. Anyway, the more mathematically inclined
among you might have said, ”That’s an awfully bold claim! I’d like to see
this purported proof.” Actually, the less mathematically inclined among you
might have said that, too. I don’t know. I’m not really in the business of
predicting what people will say.

Anyway, in this section, I wanted to sketch out how this proof would
go. If you’re afraid of math, no worries - the proof is obviously pretty short
and doesn’t require any advanced math. (Honestly, that’s probably a good
description of what’s most amazing about this proof - it’s short and doesn’t
require advanced math).

All right, let’s do this...

5.1 The First Step: State the Facts

To start out, we’re going to need two facts, which I will cleverly label Fact 1
and Fact 2:

Fact 1: The radical of xn is the same as the radical of x, which makes
sense since the radical gets rid of exponents. If we wanted to write this in
math, we would say rad(xn) = rad(x).

16
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Fact 2: rad(x) can’t be bigger than x. Of course this is true - the rad-
ical function strips exponents, so it either makes your number smaller or
keeps it the same. In math language, we would write rad(x) ≤ x.

Now, let’s say we had a solution to our Fermat equation

xn + yn = zn.

(We’ll assume that x, y, and z are all positive.) Then we can add Fact 3:

Fact 3: x and y are both less than z. You add two positive numbers,
you get a bigger positive number. That one makes sense.

5.2 Bring on the Conjecture!

Next, it’s time to bring in our ABC Conjecture. Remember that the ABC
Conjecture said something like

c < rad(abc)2.

There were all different variants, but we’ll go with this one because it’s a
nice, round exponent and I don’t feel like dealing with decimals.

Let’s apply the ABC Conjecture to our Fermat equation. We’ve got

zn < rad(xnynzn)2.

Now, we have the following observations:

1.) rad(xnynzn)2 is the same thing as rad(xyz)2 because of Fact 1 (the
radical takes out exponents, so we might as well help it out).

2.) rad(xyz)2 ≤ (xyz)2 because of Fact 2.
3.) x and y are both less than z (Fact 3, represent!). So (x · y · z)2 ≤

(z · z · z)2.
4.) (z · z · z)2 is the same thing as z6.
5.) Running by the pool is prohibited.

Putting all of these together, we have that
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zn < z6.

That’s pretty restrictive. Since z is positive (and an integer), what this really
means is that n has to be less than 6.

In effect, we’ve managed to reduce Fermat’s Last Theorem down to some
very easy cases, since the cases where n is less than 6 aren’t all that difficult
and were solved by the early 1800’s.

Impressive, no?


