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ABSTRACT OF THE DISSERTATION 

Wavelet Spectral Density Estimation o f  Continuous-Time Stationary Processes under

Random Sampling 

by

Mark Eugene Lehr

Doctor o f Philosophy, Graduate Program in Applied Statistics 

University o f California, Riverside, March 2002 

Professor Keh-Shin Lii, Chairman

It has become increasingly accepted that wavelet based estimation techniques 

are generally better adapted to function estimates having large variations or, for lack 

o f a better term, roughness. We consider a class o f  nonlinear wavelet estimators for 

the spectral density function o f a zero-mean, stationary, not necessarily Gaussian 

continuous-time stochastic process, which is sampled at irregular intervals. A 

stationary point process is used to model the sampling method. The biases as well as 

the covariance properties o f these alias-free estimators are investigated for their 

theoretical aspects. Simulation examples are presented to illustrate the salient features 

o f the properties to be expected from such an analysis.
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1 Introduction and Methodology

Data analysis is literally the most basic function performed by individuals no matter 

their age, educational background or employment classification. How else are 

decisions made? How else are conclusions reached? O f course, nothing is implied as 

to how well this task is being accomplished only that we all participate in the process. 

This decision process occurs with or without error from the day we are bom and 

proceeds on a daily basis throughout our lives. Some approaches are more successful 

at revealing certain underlying fundamental principles then others and more 

importantly, the more revealing the analysis technique the more likely the correct 

conclusions are reached given the nature o f  the data.

The following treatise utilizes a technique that has been around in a popular form 

for a little over a decade and applies it to a problem that is related to randomly sampled 

time series data. It is not meant to represent a definitive, once and for all approach to 

the analysis o f this type o f  problem but does present the theoretical foundation for 

utilizing such a technique and develops the rationale for why it can be used as a very 

important tool in analyzing information having the stated structure.

1.1 Introduction

Time Series data refers to any recorded process that occurs over time. As an 

example, one o f the more famous time series is Sunspot data recorded over many years 

[Herzberg, 1985]. The basic idea is to investigate the possibility o f recurrent patterns

1
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or the applicability of theorized models that explain the deviations. This would apply 

equally as well to Stock Market fluctuations, unemployment data, and any business 

cycles, just to name a few. If  these patterns actually existed and could be determined, 

predictions could be made that utilize the underlying information. Corresponding 

forecasts could be taken advantage o f in any number o f  ways.

Normally, time series data is analyzed based upon the fact that the time interval 

between samples is constant. However, there are a number o f real world instances 

where this is not possible or might not be entirely desirable. Consider data dropouts 

where data has been lost. In addition, data might not be recorded regularly and may 

seem to be taken at random, if not in practice then in actuality.

A natural way to analyze data, specifically time series data, is to transform it to an 

orthogonal system whereby the same information is simply represented in a different 

format. Spectral analysis represents one o f these transformations o f  time series data to 

the frequency domain. It has been around for well over 200 years in physics, and most 

recently in the communication industry where it is all too familiar to every electrical 

engineer. There are advantages to analyzing data in the domain in which it exists. 

Fourier transformations are the natural way to look at data when it has periodic 

tendencies. Another type o f  transformation is the wavelet. Wavelets have their own 

advantages because they form a very general and quick procedure for deducing 

important differential and stepwise characteristics.

2
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In this paper we will first present the relevance of the above type o f  data and then 

provide an overview o f  the techniques utilized in analyzing this information. The 

following sections discuss in general terms, the major considerations o f  each technique. 

In Section 2 we will present some historical and brief mathematical aspects o f these 

analyses. A simple synthesis will be suggested, combining these approaches to 

investigate a problem o f estimating spectral densities from randomly sampled time 

series data. Section 3 will develop the mathematical basis and theory o f  this technique. 

Section 4 will apply the procedure to data o f a sufficient nature so that we can see it’s 

utility. Last but not least Section 5 will present were to go from here now that the 

foundation has been laid for future investigations. The appendices include some 

preliminary background, definitions, propositions, and lemmas which are helpful in 

understanding the previous sections.

1.2 The Applicability of Fourier Analysis

An extremely large class o f  problems falls under the Fourier or Spectral analysis 

methods. With the advent o f computers and algorithms that compute the Fourier 

transform in OfNlog^N), N represents the number o f sampled data points, it has 

become commonplace to expect any time series study to include this type o f foraging. 

The analysis utilizes trigonometric functions (i.e. sines, cosines) and has grown to 

encompass mathematical rigor in the areas o f estimation, convergence criteria, 

existence and uniqueness.

3
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The Fourier transform and its cousin the Laplace transform represent linear 

decompositions and are widely used in science and engineering. To give an idea o f just 

how pervasive and diverse these techniques have become, it is commonplace to see 

Fourier transforms used in boundary value problems, optics, quantum mechanics, image 

compression, image restoration, probability theory, economics, and the list goes on and 

on. As a matter o f fact, it has become widely accepted that this is not just a technique 

for analysis but represents a physical phenomenon o f  nature and the world we live in. 

Hence, it is relevant to analyze data on the basis o f where its functional characteristics 

reside or what function space the physical process exists.

1.3 The Applicability of Random Sampling

It is pertinent to mention briefly some o f the inherent physical constraints to 

Fourier analysis. The sampled data is normally recorded at fixed intervals. This makes 

the recording process rather easy to mechanize and automate. However, there are 

mathematical as well as physical limitations present when we use such a procedure.

First, it is well known that a signal can be recreated exactly without error from a 

recorded sequenced set that is sampled at twice the rate o f its highest frequency. This 

rate is referred to as the Nyquist rate or Nyquist frequency. The Sampling Theorem 

from which the Nyquist rate is derived is a major tool that has remarkable 

consequences.

4
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Having stated this remarkable result there is also a downside. Over-sampling data 

can only help in reconstruction. However, under-sampling, meaning that the Nyquist 

frequency has not been reached, causes complications. This is known as aliasing. The 

higher frequency energy is not lost just placed into other frequency bins. The overall 

result is that we cannot reconstruct the signal. Errors are present due to this ambiguity 

and the farther away we are from the Nyquist frequency; the more energy will leak into 

the surrounding domain.

There is one technique that will mitigate the sampling limitation. Instead o f 

sampling at uniform rates we can randomly sample according to any number o f  random 

schemes. Mechanizing this scheme with modem electronics is not an implementation 

problem. Multiple transducers can be utilized to create infinitely small separations in 

the sampled data. There are o f course time constants associated with the transducers, 

but sampling can be tagged well ahead o f  the actual reading so this is not an 

implementation constraint.

1.4 The Applicability of Wavelet Analysis

One o f many important results that could be obtained from spectral density 

estimation is the identification of peaks in the frequency band, which are closely related 

to fundamental periodicities in the time domain. A number o f factors may obscure the 

identification o f these peaks such as the sampling process, the estimation process, the 

signal to noise ratio, or even the proximity o f the peaks or depressions to other

5
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fundamental frequencies. Typical kernel estimators can smooth peak effects that may 

tend to obscure essential signal characteristics and their identification.

Wavelets, on the other hand, have been used effectively in estimating density 

functions limiting the associative smoothing effect penalty. This tendency is based on 

scale as the primary tool to de-noise signals o f interest. All this will be emphasized in 

Section 2, including the fact that stochastic sampling has inherent advantages in the 

area o f aliasing. Stochastic sampling adds additional complexities to the computations 

but should be weighed against the benefits especially when equally spaced samples are 

not possible or desirable, as is the case with dropouts, or other possible random effects.

Wavelets are relatively new to the bag o f tools that can be applied to retrieving 

information from data. They represent another physical way to look at data and the 

world in which it was created. Unlike Fourier, there is an infinite number o f  wavelet 

analyzing functions that can be chosen, however it is not clear that more than a popular 

few are worth implementing for any general technique. It is true, on the basis o f 

matching filters that utility can be derived by choosing properties o f the wavelet 

function to correspond to the signal itself but due to the spatial mismatch o f  signal and 

filter that normally occurs this does not appear to be an advantage. What makes 

wavelets relatively nice to investigate data with is the ability to calculate the 

transformation with even faster algorithms then afforded by the Fast Fourier Transform 

(FFT). The speed is 0(N ) so the analysis is quick to occur and has been shown to be 

optimal in a certain mean squared sense.

6
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Currently, the fields utilizing the wavelet technique and those holding the most 

promise involve imaging processing, numerical analysis, functional estimation, 

compression, and coding. There is definitely a link between Fourier analysis and 

Wavelets. Both are orthogonal decompositions, and they have fast algorithms that can 

implement either. They are also linear in nature. Normally, Fourier techniques can be 

utilized to create any number o f Wavelet analyzing functions. However, there are a 

number o f distinctions as well. Localization with Wavelets is possible while power 

spectral densities are global. Periodic functions are best suited for Fourier analysis 

while discontinuous functions fall under the Wavelet umbrella. Since wavelets maybe 

formulated in the Fourier domain it is only right that wavelets play a role in improving 

Fourier estimation techniques.

7
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2 L iterature Review

The basis for this thesis is rooted in sampling processes, frequency 

representations o f  time series data, and wavelet based density estimation. All these 

components will be synthesized to produce a coherent application to an analysis topic 

that is of interest in the application realm. In order to accomplish this discussion, an 

examination o f the literature with respect to these three topics is a prelude to the 

derivations and simulations that follow.

2.1 Fourier Analysis

Baron Jean Baptiste Joseph Fourier( 1768-1830) was a French Mathematician 

and Physicist. One o f  the most important and seminal works o f the 1 ̂ -cen tury  was 

his development o f the mathematical theory of heat conduction published as the 

Theorie Analytique de la Cahleur, 1823. In it, Fourier developed the foundations of the 

series named after him. It was applied to the solution of boundary-value problems 

utilizing partial differential equations in thermodynamics. More importantly, it brought 

to a close a fair amount of controversy that a function could be represented by a  series 

involving sines and cosines o f integral multiples o f the variable.

The Fourier transform decomposes a function in sinusoids of different 

frequencies, which sum to the original waveform. The transform and its inverse are 

typically represented in one o f 6 ways.

8
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(2 .1.1)

The t in the above equation is measured in seconds, Q is a frequency represented in 

hertz or cycles per second and co is a frequency represented in radians per second. The 

scale factor 7t is applied based upon the conversion o>=27iQ and the desire to have 

symmetry for the inverse transform. The exponent is a  complex representation o f  

trigonometric functions in the imaginary plane (elx = cos(x)+isin(x)). They are all 

equivalent transforms and since the frequency representation is symmetrical about the 

frequency domain axis then the positive axis need only be represented visually. Refer 

to Appendix B for elementary properties o f  the transform with respect to types o f  

functions (real, imaginary, even, odd), scaling, shifting, and some important theorems 

relating to Convolution, Correlation, and Parseval’s representation. Most o f which will 

be utilized in numerous derivations throughout this paper.

Another important concept is the Sampling Theorem and since a large part o f  

the proceeding sections rely on this concept it should be discussed in a little detail here 

to reinforce the utility o f point processes and random sampling later.

9
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Theorem 2.1 Shannon’s Reconstruction Theorem Any time series signal / ( / )  that 

belongs to the Complex set and, teiR consisting o f frequency components bandwidth 

limited to the Nyquist Critical Frequency Qc can be exactly reconstructed from the 

corresponding sampled data sequence where A is the sampling interval in seconds and 

Q c= 1/2A in Hertz or cycles per second.

It is helpful to derive, and simulate the results o f  the above Theorem so that 

understandings o f the concepts are more intuitively comprehended. E.T. Whittaker in 

1915 and Kotel’nikov in 1933 developed the sampling series that predated the 

Sampling Theorem. However, the importance to communication theory and Shannon’s 

application o f the tenets o f  the series in 1949 assured him o f its permanent reference 

and is one o f the central foundations o f  sampling theory. First let’s start with the 

definition o f a time domain A impulse function [Feuer, 1996]:

(2 . 1. 1)
*eZ

This is just a scaled impulse function where 8 is the Dirac delta function and in the 

above case, when t = kA the unit impulse occurs. A sampled signal is represented upon 

utilizing the A impulse function with the continuous function thus

/ , ( / ,  A) = A £ / « ) £ , . „ .  (2.1.2)
ke Z

Now, we shall look at this function in the frequency domain and transform back to 

determine the reconstruction formula. The assumption will be made that the signal is

10
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band limited, meaning the entire power o f  the signal falls below a critical frequency Qc 

which is half the sampling frequency Qs.

/ , ( / ,A )« * / ; (Q ) = F ( Q ) /o r  Q <|QC = Q t /2| (2.1.3)

A band-limited frequency domain function can be defined as

, , i n < \ n .
B(Ci) = \ c . (2.1.4)

v '  |0  Q > |QC| v

With this band-limited signal we can take the convolution o f the following equation

F (Q )= B(n)F s(Q)

to obtain

/ ( ' )  = | e3! b ( r ) f { t ) S , - TMd T . (2.1.5)
keZ

Utilizing the Fourier transform of the step function B(C2) <=> b(z) and including the 

Dirac properties with the integral gives the final reconstruction formula o f

(2. 1.6)

This formula shall be applied to several examples that follow.

The quarter hertz signal (Figure 2.1.1) is sampled at twice the critical 

frequency. The reconstructed signal is exact at the sampled points but has errors when 

reconstructing the entire signal. This does not seem to mesh with the Sampling 

Theorem except from the standpoint that the signal has not been infinitely sampled. In 

other words, the reconstruction in the center has very little error compared to the

U
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sampled endpoints. As the signal is sampled at the critical frequency there is also an 

implication that enough o f the signal has been sampled.

The three quarter hertz signal (Figure 2.1.2) requires sampling at a minimum o f

1.5 hertz but the sampling is done as before at 1 hertz. The construction is exact at the 

sampled points but the reconstructed function has larger errors. This is not just at the 

ends but is in error everywhere except at the sampled points. The frequency estimate 

o f one quarter hertz is in error by a factor o f 3. What this represents is Aliasing, which 

shows that the signal has been folded in the frequency domain back to the quarter 

hertz. The central point is that under-sampled signals are misinterpreted to erroneous 

frequency components and random sampling alleviates this condition [Lehr and Lii, 

1997].

2.2 Wavelet Analysis

A description o f wavelet properties, terminology, and analysis should start with the 

work o f Stephane Mallet [Mallet, 1989], and Yves Meyer [Meyer, 1993]. 

Multiresolution signal analysis has its roots in perception with [Marr, 1983] and the 

way the human mind perceives objects at different scales from the perspective o f visual 

acuity. It is also theorized as the way we initially perceive and learn about the world 

around us with scales in mind [Lehr & Lii, 1996]. This makes it easier to analyze and 

compare signals. It is also a possible reason why, as with the Fourier transform, that

13
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there is an inherent underlying property that makes wavelets much more than 

mathematical curiosities.

A mathematical description o f multiresolution decomposition proceeds by 

expressing a function f  e L2 as a limit o f  successive approximations [Akansu, 1992]. 

It is postulated that there exists a sequence o f closed subspaces {Vm :m e  Z} o f L2(9?) 

having the following properties

(1) Coarser subspaces are contained in finer subspaces.

(2 .2. 1)

(2) The only object common to all subspaces is the null set.

f y . - w  <2-2-2>
meZ

(3) Any signal can be approximated with arbitrary precision.

U ^ = £ J(* )  (2-2.3)
meZ

(4) There exists an orthonormal basis for the subspaces as well as an orthogonal 

complement

V =Vm ® W m
1 (2.2.4)
V  _L Wm m

(5) Functions are related to subspaces by scaling

2x)ev._, (2.2.5)

for any function / e i 2 (9?)

15
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The above 5 conditions provide the necessary framework for defining a basis 

function that can be scaled according to each o f  the subspaces. These functions are 

termed father wavelet <p(t) e  V0 and it’s orthogonal complement the mother wavelet

y/{t) 6 WQ. There are an infinite number o f  Wavelet basis possible. The first basis was

recognized by Haar in 1911 and has his namesake.

2.3 Estimation Techniques for Sampled Time Series Data

Lii and Masry, [1994] developed spectral density estimates o f randomly 

sampled data utilizing kernel smoothing. Asymptotic estimates for bias and covariance 

were derived and it was concluded that the bias was independent of the sampling point 

process. In addition there existed sampling point processes where the asymptotic 

variance was uniformly smaller that that o f  a Poisson sampling scheme for all spectral 

densities and frequencies. The advantage to this approach involved the alias-free 

nature o f the resulting estimates.

Donoho, et.al. [ 1995] published a seminal work with respect to defining 

wavelet estimation techniques. They synthesize the current relevant approach to all the 

estimation techniques and conclude that wavelets are computationally practical and 

spatially adaptive. The shrinkage method is nearly minimax for a wide variety o f loss 

functions and smoothness classes.

Neumann, [1995] considered nonlinear wavelet estimators of spectral densities 

with non-Gaussian conditions. The goal was to recognize peaks in the spectral density,

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which are indications o f  periodicities. Whereas kernel estimators, and splines are an 

appropriate tool for estimating functions with a degree o f  smoothness, they are not 

necessarily the tool to utilize on less regular functions.

Hall, et. al. [1998] developed block thresholding rules for curve estimation 

using kernel and wavelet methods. They pointed out that wavelet methods adapt to 

erratic fluctuations in signals, have excellent mean squared error properties when used 

to estimate piecewise smooth functions, obtain the minimax convergence rates that are 

close to optimal over large function classes. The traditional linear estimators achieved 

relatively good performance for smooth functions.

2.4 Problem Synthesis

The synthesis o f  this investigation involves a combination of all the topics 

previously discussed. Namely, the derivation o f estimation techniques, which utilize 

randomly sampling, Fourier transforms, and wavelets to determine the power spectral 

density and it’s associated properties. This proposed estimate will be alias free due to 

the random sampling process and asymptotically consistent due to the wavelet 

implementation. This section presents the distributional characteristics o f the wavelet 

coefficients and the process that will be used to reduce the variance of the estimate to 

achieve consistency.

Let us assume that we have samples {X, } ~ WN(Q,cr2) . Using the Fourier 

transform to calculate the periodogram gives {/ ~ (<x2, (1 a  2)c t4 )}. The periodogram is

17
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exponentially distributed with the above mean and variance as well as being 

uncorrelated. The 2 applies to the variance at frequencies o f  0 or ic . We will leave out 

this detail to approximate the wavelet coefficient properties in general terms. The 

resultant spectral density estimate would be a constant random noise sequence across 

the frequency distribution with the mean and variance properties noted above. As the 

number o f samples increases the variance will not diminish. Transforming the 

periodogram in the wavelet domain will distribute the mean and variance o f the noise 

much differently then in the Fourier domain. The periodogram can be transformed into 

wavelet vectors represented by the following

|  K  A  A  *  I
(2-4.1)

and defined in detail shortly. The first term /  is the low-pass filtered component at

scale 0 and each successive term is a high-pass filtered component at differing scales. 

This represents a multiresolution decomposition as defined by Mallet [Mallet, 1989]. 

To state simply, the first term contains the mean components o f  the signal at scale 

while the rest contain derivative or differencing information at each o f the scales

The following table depicts the number o f components in each o f the vectors 

and their distributional qualities when transformed in the wavelet domain.

18
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Table 2.4.1 Distributional Characteristics o f Wavelet components associated with 
the transformed Periodogram

Vector Representation Distribution o f  each component 
in the Vector (mean, variance)

Number of 
components

f  -> the original Periodogram (cr,cr4) n—1

f , ->wavelet vector at scale J+m__f+m (0,ct4) n/2

« . > * . • . . .

/  ->wavelet vector at scale J (0,a4) n/2 ^ '

. . . . . . . . .

f  ->wavelet vector at scale 2 — 2
(0,a4) n/2J*nvl

f  ->wavelet vector at scale 1 (0 ,a ) n/2J+m

f  ->wavelet vector at scale 0i—G (0,ct4) n/2J ^ i

f  ->mean wavelet vector at scale 0 1—0
(2u+m+,v2<r ,cj4) n/2J+mH

The wavelet transform for this illustration is implemented with a series o f filters 

that have coefficients hk with properties that are termed quadrature mirror filters.

K  =(-!)*',-*■ (2-4.2)

The filters that transform to the wavelet domain are termed analyzing filters and the 

filters used to return to the frequency domain are termed the synthesis filters. The 

sequence {L:lk,keZ} represents the low-pass filter coefficients and similarly the 

sequence {H} represent the high-pass filters. The analysis {L, H} filters and the 

synthesis filters (L*, H*} have the properties that L=L* and H=H* which is why they 

are termed quadrature mirror filters. Quadrature refers to orthogonality and mirror 

refers to equality. Applying the filters produces the following distributional properties 

for (mean,variance)
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fj+mjt = S n /2*-«/" ~(V2<r2,<x4),

fj+m.k = X ,  K k-nh -  (0, O'4 ) .

This is a simply a linear combination o f (cr, ct4) uncorrelated random variables so the 

distribution o f  each component is easily calculated. The low-pass filter coefficients sum 

to V2 = while the high-pass filter coefficients sum to 0 = ^ nh2k_n , hence the

means o f the distributions. The sum o f squares o f both coefficients sum to 

1 = Y  / 2 = Y  h 1 which similarly determines the variance. Note: [Daubechie,
2k - ft 2k ~m J  L

1992] uses this type o f scaling while others scale the coefficients by 1 or by a half. It is 

also important to note that this is independent o f the type o f  wavelet utilized. We can 

again apply the same process for each space in the multiresolution analysis with the 

next scale

= 'Z j'-k-nhm .k  ~ (2o-2,<74) , (2.4.3)

fj+m-\Jk ~ y._ h-ik-nfj+m k ~~ (0» 0  )• (2.4.4)

The pattern is established for each multiresolution space such that each o f the high-pass 

filtered components has exactly the same distributional characteristics as the lower. 

However, the successively low-passed filtered components increase their mean by a 

scale factor o f  V2 having the same variance regardless o f the multiresolution space. 

Therefore, the generalization can be made from equation (2.4.3&4)
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fa ~ ^..hik-nfa  (0,cr )

the mean increases by the scale factor of the low-pass filtered component and the 

variance remains the same.

The purpose o f utilizing the wavelet technique is to reduce the variance. This is 

accomplished by thresholding as discussed in Section 2.3. We can achieve any amount 

o f  variance reduction by understanding the maximum theoretical amount that can be 

achieved. Simply stated the variance can be halved successively by thresholding each 

scale. To see what happens with the reverse synthesis process we can approximate 

what happens when thresholding is applied. To reverse the process the same filter 

coefficients are utilized with

/o ,  = S .  ( f u - h *  + K - X >) • (2-4.5)

To perfectly reconstruct the signal Equation 2.4.5 is applied to all the unaltered 

coefficients. This again is a linear combination so it is easy to calculate the mean. 

However, if we threshold and reduce or eliminate the effect o f  the high pass filtered

A A
terms (2.4.5) becomes f 0 n = 2_^/,*_„/, * . In general terms the mean will be reduced

by a factor o f  1/V2 whereas the variance will be halved with this procedure. Each scale 

that is similarly thresholded will yield an additional 50% reduction in variance.

Figure 2.4.1 illustrates the effect of thresholding and its inherent variance 

reduction capabilities. A sequence o f  210 random variables are shifted and scaled from 

a beta(0.1,0.1) distribution to have the approximate characteristic distribution IID(0,1)
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for simplicity sake. The first panel illustrates the histogram o f one realization. The 

second panel contains the periodogram o f this random sequence. Its distributional 

qualities are approximately IID( 1,1) which is as predicted. The third panel portrays 

three separate curves. The first is the theoretical mean of the noise distribution with 

zero variance. The second curve contains the wavelet thresholded variance reduction 

o f  the data contained in the second panel. Eight levels or 28 coefficients were utilized 

in the threshold process. The reduction in variance is predicted to be 97%, which has 

been achieved. We should not expect to see more than ( l ^ ^ l O O  per cent reduction 

in the variance when m levels are utilized in the thresholding process. A comparison 

was made with a super smoother technique [Friedman, 1984] that has kernel smoothing 

properties. Both achieved very reasonable results and agree with the overall theoretical 

mean o f the noise process.

22
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Histogram of IID(0,1) random varibles shifted and scaled from beta(0.1,0.1) distribution 
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Figure 2.4.1 Variance Reduction using Wavelets
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3 Theoretical Derivations of the Estimates

The following discussion starts with the development o f an intuitive estimate of 

the spectral density obtained from random sampling. The estimate defined in Section 

3.1 has desirable asymptotic properties with respect to the bias. The bias tends to zero 

as the sample size grows. However, the variance o f  the estimate does not improve as 

the sample size increases, hence the inconsistency o f this estimate. We then contrast 

this result with the desirable theoretical properties of kernel estimates. These 

estimators have been applied to stationary processes under random sampling schemes 

and do achieve consistent results.

Wavelet estimation techniques are one possible solution to obtaining a 

consistent estimate without the inherent smoothing effects o f kernel estimates. The 

intuitive estimate is transformed into the wavelet domain resulting in a new estimate for 

the spectral density. In sections 3.2 and 3.4 the statistical properties o f  the wavelet 

coefficients are determined for the first and second order cumulants. Naturally, this 

new representation o f the previous intuitive estimate with all linear terms in the 

expansion has exactly the same properties as the previous estimate. The desirable 

asymptotic properties in bias remain as well as the undesirable inconsistency.

In order to achieve a consistent result, we shall introduce a small bias to the 

estimate in the form o f a truncation to the series as outlined in Section 3.3. This effect 

balances the bias and variance resulting in a consistent estimate depicted in Section 3.5.
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3.1 The Intuitive Estimate

To set the stage for terminology and notation we borrow from Lii and Masry,

[1994] by letting X  = ^ ( r) ,/  e r] be a zero mean stationary process with finite second- 

order moments, continuous covariance function Rx (/) e  Z,, and spectral density 

function f x = ( f x {X),A. e. R). The sampling process is a stochastic point process 

(rk }kez is stationary, orderly, and independent o f  X, with finite second-order 

moments [Daley and Jones, 1972]. With this in mind, let n ( ) represent the counting 

process associated with the sampling scheme {vk }keZ and f t  = cwm(vV(0,l]) be the mean 

intensity o f the point process.

If the sampled process is defined as z (s)=  Z ^ (r^ ) where ( 5 e  {b }, the
rk&

Borel set) then the increment process Z has finite second-order moments. In 

differential notation we can write dN(t) = N((0,t + dt]) —N((0,t]) and

dZ(t)= X(t)dN(t) which upon evaluation givescw/n(az(f)) = cum(x(t)dN(t)) = 0 due to 

the independence o f the signal and the sampling technique. The covariance density cN 

for distinct tj S is defined as

c.v (t2 - / ,  ]dtxdt2 = cum{dN{tx),dN(t2)), 

and the Fourier transform o f the covariance density becomes

rj(X) = (2ttY  (u)du, cn <=Lx.

The point process statistical properties are

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cum[N((t, t + dr])] = pdt,

C v (du)dt = cum\N((t,t + dt]\ N((t + u,t + u +

C n  is termed the reduced covariance measure, which is a a-finite measure on the Borel 

set with an atom at the origin C v ({o}) = /?. We assume that C n is absolutely 

continuous, outside o f the origin, with the measure and the density related by

Cv (B ) = (8 ) + \ c N («Vw, B e B .
B

With the preceding definitions o f all the relevant terms, the spectral density o f the 

incremental process Z is

A W  -  /»2A W  + (2*)-'/»,(<>)
+ l , /v (2

As above for the counting process we can define a covariance measure o f  the increment 

process C7 = C 72) with

dCz (u)dt = cum\dZ{t\dZ{t + w)}

A few comments about the densities are important at this point. The covariance 

density Cn is zero when dealing with a Poisson sampling process. It should also be 

noted that the spectral density o f the increment process is bounded, uniformly 

continuous but f z (A.) e  £, in general.

The underlying function o f  interest f x {X)\s the focus o f our investigation, 

which will require the rearrangement o f equation (3.1.1) so that it portrays the term, 

which will be estimated by f x = { fx (a \ A  e  /?). Refer to Appendix B for the procedure
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utilized to invert first order integral equations using Fourier techniques. Two more 

terms are defined with this implementation in mind by letting

W iu)T \  (3 1 '2)P  +CN{u)

and assuming its integrability

y(u) e  Lx and  T(>l) = (2tt)~' ^  e~mAy(u)du e  Z.,.

We now obtain f x (X) in the process with

/ ,  (a) -  ̂ { / z W -  ̂  -  £  r(a -  .][/, du\. (3.1.3)

By Lii and Masry, [1994] is also established that a sufficient condition for the sampling 

process {zk} to be alias free is that the denominator of equation (3.1.2) be greater than

zero P 2 + cs (n) > 0 a.e.

A Natural Estimator

To find the spectral density o f X from the discrete data {^(r*), zk where 

N(T) is the number o f samples in [0,T] we utilize the following sampled equations that 

are estimates o f the components to f x (A.). The estimate for the covariance at lag 0 is

« r ( 0 ) - G ? r ) "  (3.1.4)

The periodogram for the incremental process Z is defined as
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f M  = {27c T ) - ' \ [ e - ‘u iX { u ) d u (3-1-5)

With these functions we can now estimate the spectral density o f X utilizing 

terms that are associated with the sampling process with

A W  =
f s M )  =

which can be characterized as having Poisson f p and Non-Poisson fn? like components 

equating to

f x & )  = f M + f M -  (3-1.7)

Of course, the convolution component for the Non-Poisson condition is / w»(/l )= 0  

when dealing with Poisson sampling schemes.

Bias Characteristics

Now we examine estimates to determine their statistical attributes. The 

correlation estimate at lag 0 utilizes Fubini’s Theorem and the independence of the 

sampling method with the process itself thereby giving

cum (/t,(o )) = (p ry  cum{^ cum {x 2 \u m  

= {flT)”‘ £  cum {x2 )cum(dN(t))

By previous definition since

cum (x 2{t)) = Rx (0), 
cum(dN(t)) = pdt,
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then we obtain the following unbiased estimate o f  the correlation o f  X at lag 0 with

CKm(tf,(0)) = (3 1 g )

«v (0 t

The Fourier integral transform o f  the sample is defined as

d ZJM =  [e -* X { t)d N ( t) .  (3.1.9)

The estimate o f the spectral density o fZ  utilizing the above and (3.1.5) becomes

cum (A W ) = c u n L ^ ^ e - a X(/)rfAf(/)|'

-cum {d z j{ ^ \d z ,r (2nT

Note: the following equations that are numbered starting with the letter “A” are 

referred to as assumptions made in deriving solutions for the estimates. Making use o f 

Theorem 4.1 o f Brillinger, [1972]

£ ( l+ H )rf |C J (W)|<oo, (A3.1.1)

gives

cum {dz r ( l ) , d z r (u)} = 2xDr (A + u ) fz (X) + 0(1).

The continuous Dirichlet kernel Dt is defined as

l - e ‘ar
a

and the 0 (  1) term is uniform in X. Hence,

Dt (A.)= J V '* < * = — ------ (3.1.10)
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cum ( /z W ) = IKI
A -(o ) /z W + o ( i)

By definition, and using L'Hopitals Rule then

d{iX)
iTe - t X T

X=0
= T.

x=o

The resultant expectation becomes

cum(fz (A))= f z (/l)+ 0 ^  j  . (3.1.11)

This is asymptotically unbiased where the 0 (1 /T) term is uniform in X. For the Poisson 

sampling case the estimate becomes

cum cum

(3.1.12)

2/r I + B2 7 \

which is an asymptotically unbiased estimate where the order o f magnitude term is 

uniform in X. Similarly the non-Poisson term can be estimated using the previous result 

with
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cum = cum ( - £ r  (x-u)fz(u)du)
= — ^  r U  — u)cum{jy {ufjdu

= -  {  r(x -  u)fz (u)du -  £  r(A -  « > / ! W

Since T e  i ,  and the order term is uniform in A. then we have an asymptotically

unbiased estimate for the non-Poisson component with

> ( /» . w )  =  / v , W + ocum\ f (3.1.13)

(3.1.14)

Putting this together for the spectral density o f X results in

cum (A -W ) = cwm I ^ W + A p W )

= / , W + / » p W + o ( f )

=

This is an asymptotically unbiased estimate o f  the spectral density o f X. Additionally, 

we can see that it is asymptotically independent o f the sampling process.

Covariance Characteristics

For the covariance estimates the following assumptions [Lii and Masry,1994] 

are generalized for higher order cumulants with respect to the signal {x{f\-oo < t < 00}

and the sampling process {rk . As before, all assumptions are numbered with the 

letter A at the beginning to distinguish them from referenced equations. The following
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assumptions refer to an integer K > 2 for generality with respect to moments o f the 

cumulants but the current utilization in this section never exceeds K=4.

Integrability o f  the signals cummulants

l ^  + \u]\cV{ux, . . . ,u k_x\dux...duk_x < 0 0  (A3.1.2)

for j = 1,..., k-1; k = 2, ..., K, where c(k) is the kth order cumulant of X. Incidentally 

cx \ u )  = Rx (u ). In particular,

c {̂ (0 ,u ,u )G L x n L x. (A3.1.3)

Similarly for the sampling process

+ <°° (A3.1.4)

for j = 1,..., k-1; k -  2, ...K  , and is the kth order cumulant defined by 

cum{dN(tx) , . . . ,dN{tk )} = cjfJ(/2 tk - t x )dtx■■■ dtk

for distinct tj S- Note that c ^ ( u )  = c v (w).

The preceding assumptions require that E\X{t)(* <oo as well as E\dN(t]k < oo 

for the existence o f the cumulants = 2 , . . .k }. Next we define the cumulants

C ^ ( u x ,...uk_x) o f  the increment process Z by

cum{dZ(tx\ . . . ,d Z { tk)} = dC{z ](t2 - t x, . . . , t k - t x)dtx (3.1.15)

and C[k) is o f  bounded variation over finite cubes. Then under assumption (A3.1.2) 

and (A3.1.4) we have ([Brillinger, 72] p. 485).
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i*-, &+\uj i Vic z }(w. >—»«*-. i  < °°.
j  =  1 , . . . fc;k =  2 , . . . , K .

(3.1.16)

The kth-order cumulant spectrum is defined by

/ i ‘ 'U v . . , V , ) s z 4 r L '  ' - x'dC (‘> ( u , (3.1.17) 
(2*-)

and we note that this is bounded, uniformly continuous but not integrable in general, 

and / j 2,(2.) = f z (A). Similarly, we utilize ([Brillinger, 72] Theorem 4.1) as we did 

with A3.1.1 to obtain

cutr{dIT  (2, \ ... d z T (X, )) = (2^)*-' DT\ Y dx \ f P ( X , , . . . , X k_l)+ 0 (\)

k =  2 , . . . , K .

(3.1.18)

The 0(1) term is uniform in the A.’s.

We can rewrite the spectral density o f X by first considering the inverse Fourier 

transform o f

At u = 0 we obtain the equality y(0) = j  I =  f r(20 -  X)dX . This can be utilized

to rearrange the spectral estimation function from Equation 3.1.3

/ ; ( « ) -
p k M

2  i t
du

to the more convenient form
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h  W  - j j r  i  W -1 -  « )  -  r(A  -  u ))h  (u)du+ A l  Rx (0) (3 .1 .19)

for utilization in the covariance calculations.

To simplify the notation let Q{X) = S(X) — r(A.) which leads to the spectral 

density estimate definition as

= ( 3 I -20)

The covariance of the estimated spectral density o f X becomes

cum[fx ), f x (/I,)) = (2K p Y  [l -  r(0)]2 Var{kx (o))
+ Q fa  ~ w, }Q(A2 -  u2 )cum(fz (u,), f z {u2 t y u xdu2 

+ (2Tip) ' 1 l Q { ^  -u)cum (fz ( u \R x (0 ))du 

+ (2n p Y  ? Q(X -  u)cum(fz {u), Rx (0)]du,
= T ,+ r2 + r 3 + r 4.

(3.1.21)

The magnitude of Ti may first be calculated by

ra r f i  AO)) = V cJ ^p r)-' ( X-(l)dN(l)),

=  (pry2 (  (  cov{xAt)dN(tlxAs)dN(4

Since the signal and the sampling process are independent then

cum(gr (0),g r (0)) = (J3T) ' 1 £  [ c u m ( x 2(')dN(t),X! (s)dM(s)),

= ( p r y 2 f f  cum ( x 2 (/), X 2 (s)]cum(dN{t), dN(s))i

The quantity E ( x 2( t )X 2(sj)= c u m (x 2 ( t ) ,X 2 (s))+cum2 (X ( t \ x ( t ) ) .  Using Mendel,

[1995] we have the following identity
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E ( x 2(t)X2{s)) = c u m { x { t \ x { t \ x { s \ x { s ) )
+ c u m (x ( t \x (s ) )c i im (x ( t \x { sy \
+ cum{x{t\x{s))cum{x{t\x{s^)
+ cum2{ X ( f \X { t>j).

This equates to

cum(x2{ t \ X 2{s)) = c u m { x { t \ x { t \ x { s \ x { s ) )  + 2 cum2{ x { t \ x ( s ) )
= c (̂ (0 ,r ,r )  + 2RX (r)

where the variable r  = t — s and Rx (r) = c x (r)  = c (2)(r ) . With the change o f variable 

var(AAo)) = (pr)-2l l  cum (x 2 ( t \ X 2(s'))cum{dN{f), dN(s))

=  p - 2T ~ x [ r { l - \ t \ T - xl 2 R 2v ( T ) + c {̂ 0 , T , T ) ^ p 2 + p S { z )  +  c s { T ) } d T

< p - 2T~l £  {2^ . (r) + c(4)(0, r. r)}{p2 + c v (r)}c?r 
+ /T 'T '1 |2/?2 (0 ) + C(4)(0,0,0)}

=  o (t )

(3.1.22)

The second and third row in the above equation utilizes the stationarity o f the process, 

and the symmetry o f the cumulants. The final result follows with the conditions that 

R 2 e  Lx and Rx cs, e  Lx given Rx e  Lx ,cN e  Lx and (A3.1.3). The order is

Tx = (27rp)-2[ \ - r {0)yar(Rx {0))
= ( 2 x p y 2[ \ - r (0 )p { T - ')  (3.1.23)
= o (t - ')

The second term T2 is evaluated next by first examining the covariance inside the 

integral from (3.1.21)

cum(fz (w,), f z (u2 ))= {2rcT)"' cum(dZ T {ux )dz r ( -  ux), d Z T (u2 )dZ T ( -  u2)).
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Applying MendeL, [1995] again

cun(dzr  (m, )dZT (~ui)»dZT (u2 )dzr  {—u2)) = cun(dzr (ux \  dZT (—w,), dZT (u2 \  dZT (— u2 ))
+ cun(dZT{ux), dz r (u2 )]cun[dZT{-ux\ d z r (-u2)) 
+ cun(dzr (ux I  dZT {-u2 )]cun(dzr  (-«, \  dZT {u2))

With (3.1.18) we can rewrite such that

cum(fz (ux I  f z {u2)) = {2kT  ) '2 }(2^-)3 DT (0)/^4) (ux , -u x, u2)+  O(l)]
+ h.7iDr (ux + u2 ) / i 2)(w,)+  0(1)] 
x \2.jiDt  ( - u x- u 2 ) / f ) ( -  u ,) + 0(1)]
+j2xDr ("i - u 2 ) f z 2)(“i ) + 0(1)] 
x [2xDt  ( -  ux + u2 ) /^ 2) ( - « , )  + 0 ( l) J

(3.1.24)

We use the definition o f the Fejer kernel Ar (X) = T~x | Dr (Xff  to simplify the results.

Cov[fz (ux), f z (u2)) = {2^7’-‘/ z(4)(w1 , u2)]
+ ^ "‘|/z (" .) |2[Ar("i + h,)+A ./. ( - mi + « ,)]

+ 0 ( l ) A | l ) [ f l r („i + u2)+ D r ( u , - u 2)]
T ~  \

+ 0 {X ) f \  “>X -\P t( - w, - U2)+ Dt ( - ux + u2)]
2 7lT-

+ O 0 i
I n T 1

(3.1.25)

Now we can look at each term in the covariance o f  the spectral density o f  Z to 

determine the order o f magnitude o f  each component. We assume the 4th order 

spectrum is bounded f z  ̂ e  Ln from (3.1.17) then the order of this term is o { r ~l ) and 

similarly for the terms involving the Dirichlet kernel since even when evaluated at its
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maximum the order is only o {r  1). The term to be cautious o f contains the Fejer 

kernel, which at 0 evaluates to T. Therefore the most significant term in T2 contains

I f z  («1 f  * T~x [Ar (zq + u2)+  Ar ( -  ux + u2)] 

which when evaluated leads to

cum(fz (ul\ / z (u2)) =
o (t -')  |« .M « 2|
| / 2(k,)|! + 0 (7- ' )  |« , |- [ « , |* 0 .  (3.1.26)
2 | / 2(",)|2 + o ( r - ')  K | = K | = o

And as

lta c « m( / z (a ,) , / ,(« ,) )  = | / z (h,)|! K } (3.1.27)

which implies that the covariance terms asymptotically tend to 0  and the variance terms 

are a function o f the squared spectral density o f the sampled process. To finish the 

second term we have to apply it to the integral with the results from (3.1.26). The 

function Q(a ) = 5(X) — Y(X) is Q & Lx. Realizing the integral has the following 

properties

QU1 “  “ i )8 (^ 2  ~ u 2 )duxdu2 = _  y(0 ) ) 2 c -t 0  ^3 ' 1 '28^

the order remains the same as (3.1.26) and has asymptotic properties o f (3.1.27).

The Cauchy-Scwartz inequality will be used to bound the last two terms o f

(3.1.21) withCov2 (<z,6 )<  Var(a)Var(b) which gives

Cov(£, W l* ,(0 ))s  Varu2{kMVar''2(f2 (A) (3.1.29)
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This gives terms that are at most 0 ( T I/2). Therefore, the most significant term remains 

the second based upon the fact that one part is not a function o f  the number o f samples.

The above assumptions (A3.1.2)-(A3.1.4) with the preceding analysis produce 

the following bounded equation for the covariance o f the estimates

cum (fx {Xx\ f x { l rL)) =
o ( T - 'n )

+ o ( r " 2) W  = (3.1.30)
2 p - ' \ f z ^ t  * 0 [ T " n-)  W - f c l - O

which, along with (3.1.14), identifies the result o f this natural estimator as 

asymptotically unbiased but not a  consistent estimator due to the variance. A way to 

obtain a consistent estimate follows by utilizing weighted sums and will be compared in 

the next sections with the derivation o f wavelet estimators.

Kernel Estimates

The behavior o f kernel estimators with respect to the conditions already stated 

in relation to spectral densities has been investigated in Lii and Masry, [1994] and is 

summarized here for comparison purposes. Given a weighting function that is real, 

even, and having the following properties

[w U )d A  = 1,
4  IT .  L . r , L {.

then the weight can be scaled according to a bandwidth parameter br such that

fVr (A) = b;'fv(b-'A). As T —> oo, bT -> 0 we can convolve this weight with our

previous estimates from equation (3.1.7) to obtain a new estimate o f  the form
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A r W =  J > r ( ' l - ‘‘) / 2(«)‘*‘- (3-1.31)

With this new estimate we consider the revised estimate o f  f x (A) given by

A » W  = p k M
" f  rC* -  “V z.t («)-(2/r)-' 0RX (0)J&j.

Bias of the Kernel Estimates

Using the same assumptions as before with those o f the weight produces a very 

similar result for the bias

f x . M ) ) =  l w r ( A - u ) f x (A)du + o ( r - ' ) .  (3.1.32)

It follows that E [fx w {X^ —r~*’” > f x (A)for all continuity points o f f x (A). And in 

particular should both the Fourier transform o f  the weighting function vv(/) and the 

spectral density f x (A) be twice differentiable {w<2),/( .2)}, bounded and continuous the

bias[fxw (A)J = -2H 6r2w(2)(0)/i2)U)+O(6f)+ o (t ' 1 ).

Thus this is independent o f the statistics o f the sampling process and in particular is not 

dependent upon the sampling rate p.

Consistency of the Kernel Estimate

Utilizing the same assumptions (A3.1.2)-(A3.1.4) from Lii and Masry, [1994] 

the covariance is obtained with
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TbTC o J j x w M f :rK(X1))=

By letting bT —> 0 and 77jt  —>oo as r  —> oo then we have, with equation (3.1.32) a

consistent estimate. Note: there is a  great deal o f similarity with respect to the

weighting function in particular the bandwidth parameter utilized in obtaining

consistent estimates and the wavelet scaling functions.
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3.2  First Order Cumulant Properties (Wavelet Coefficients)

We will start the derivation utilizing the conditions established in section 3.1 as

well as using Assumptions A3.1.1 to A3.1.4. The same process is involved and we will 

simply add to this by recognizing a few more concepts that will help in deriving the 

statistical properties o f the wavelet coefficients.

The purpose of using wavelet estimators has succinctly been stated in Donoho 

and Johnstone, [1995] which is the rationale for attempting to create and examine their 

characteristics in this framework. Substantial work in related areas to spectral density 

estimation under equally spaced sampling has been accomplished in Gao, [1993] and 

Neumann, [1996]. Poisson random sampling spectral density estimation has been 

previously done by Lehr and Lii, [1997]. We proceed with defining the wavelet 

expansion o f our function in this setting with some assumptions on the wavelet basis 

functions. Let the wavelet expansion of the spectral density estimate defined from 

equation (3.1.7) be

fx  W  =  +  S  H<Zjkv jk (X), { / ,/ ; /  > /} e Z  (3.2.1)

where the wavelet coefficient estimates are given by

(3.2.2)

(3.2.3)
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Note: The summations depicted in equation (3.2.1) begin at some fixed scale level (/). 

The functions {<f>,y/}axe referred to as the father and mother wavelets, which generate 

an orthonormal basis set, scaled and offset in the following manner

^ W  = 2 "V (2  ' i - k ) ,  (3.2.4)

iyJ t (X )= 2 i n v {2 , l - k ) .  (3.2.5)

Refer to section 2.2 for the scaling, shifting and multiresolution properties o f this basis.

Our first assumption shall be that the wavelet functions are similar in nature to 

the spectral density, that is if /v-(2)e Cm then

, ( / } e C >  >m,

£  y/{pc)xk dx ~  0,0 < k  <  r,where

J\<p2 ( x ) d x =  ^ y / 2 { x ) d x  =  1.

The existence and utilization of (A3.2.1) is presented in Belykin, et.al., [1991] which 

deals with the compression o f large matrices and Neumann, [1996] with non-Gaussian 

spectral density estimation.

Father Wavelet Estimate

Taking the expectation and using the results from the previous section gives

cum(ak) = c u m {^ fx {t.)(f>lk {X)dA) 

cum(fx { ^ IJc{X)dA.

\ f x ( f y IJ[(X)dX+ l o { T - % k{X)dX.
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We can use the definition o f the wavelet coefficient for the left half o f the integral and 

determine the order for the right half using simple identities from the Wavelet Basis 

Lemma in Appendix A. Since <f> e  Lx, uniform in frequency we have as a result with a 

change o f variable the estimate for the father wavelet coefficient is

cum(at ) = + 2 " J A - k}tX
a ,  + o(2 ~"2T -')

This is an asymptotically unbiased estimate o f  the father wavelet coefficient if 

0 a s  r ^ . 00 

Mother Wavelet Estimate

Taking the expectation and using the results from the previous section for the 

mother wavelet gives

cum(aj k) = c u m (^ fx (A}^JJC(A)dA)

= £ cum

= i / r U V , ,  + j ;o ( 7 -

We can use the definition o f the mother wavelet coefficient for the left half o f the 

integral and then determine the order from the right half using simple concepts from the 

last section and a change o f variable thereby obtaining the magnitude of the estimate

cum(^J.k) = I f x & V j . k i ' f y A  +  2 J/2 ^o (T ~ '} f / (2 U -k )d A
<*j,k + 0 {2 -j ,2 T~'}

(3.2.7)

This is an asymptotically unbiased estimate o f  the mother wavelet coefficient if  

2 - '/2r - l -> 0  as r - >  oo.
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3 .3  First Order Cumulant Properties (Spectral Density Estimate)

The previous section explored the statistical behavior o f individual wavelet 

coefficients with the intention o f  determining the consistency o f the spectral density 

estimate based upon a wavelet representation. However, equation (3.2.1) simply 

transforms the estimate into the wavelet domain. The norm is the same and therefore 

we have the same properties associated with (3.1.14 and 30) unless we utilize kernel 

techniques vis-a-vis (3.1.31 through 33). However, implementing a non-linear 

thresholding scheme discussed in section 2.3 will modify our intuitive estimate and 

develop a possible candidate for consistency due to the variance reduction examined in 

Section 2.4. Note: This modification will not change the statistical properties o f the 

Wavelet coefficients already determined with equations (3.2.6) and (3.2.7).

Wavelet Shrinkage

Donoho, et.al., [1994, 1995], have developed substantial theory for non- 

parametric smoothing based on the principals of wavelet shrinkage. The rationale for 

shrinkage rests on:

1. Signal features are normally represented by a few wavelet coefficients,

2. Noise affects all wavelet coefficients, and

3. By shrinking wavelet coefficients towards zero the noise can be reduced 

while preserving desirable features of the original function.

Theoretical results show that non-linear shrinkage functions such as
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when applied to wavelet coefficients thereby forming a new estimate f ^ nnk can almost 

achieve the minimax risk over a broad class o f functions F

Risk(fshnnk, / ) *  ittf sup Ris/c(f, f )
/  /€/•

The value o f  c is typically chosen proportional to the standard deviation cry o f the 

wavelet coefficients at the largest scale j as c = cTjA. . The constant of proportionality

is based upon the works of Leadbetter, [1983] with A, = ^ 2  log T . The application of

the shrinkage occurs by applying the wavelet transform o f the periodogram, modifying 

some o f  the coefficient values by thresholding and then inverting the transform. This is 

depicted in the following diagram (Figure 3.3.1). The optimal result refers to the fact

A  A

that fshnnk gives nearly the best possible estimate o f /  in the mean squared sense

making a minimum number of assumptions about the underlying nature of the spectral 

density.

For our particular problem we can define a scale J(T)+1 which is O(logT) 

whereupon we apply shrinkage to the wavelet coefficients. The purpose o f choosing a 

scale that is a function o f T is related to allowing a function 2y(r) IT  —> 0 a s 7 '—>ooas
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suggested in the previous section. We start this process by considering 3 functions. 

The original transformed spectral density function

f x  W  = X a  A *  W +  X
k s Z  j 2 l  k eZ

the thresholded function

J(T)

/j(7-)W  = Z Qr*<M /l) + (3-3-2>
k eZ j - l  keZ

and the error term

«/<r)W = Z  <3 -3-3)
J>J(T)keZ

Using Parseval’s Theorem we obtain

l l / T = I M M M ! . (3-3-4)

where

ll/ , | |2 = Z a *2 + Z Z < *  ’
i e Z  y2 /  £eZ

, J(T)
!^(r)|| = Z a * + I K * ’ and

i e Z  j z l  keZ

l^ tr)! = X  X a M *
j >J(T)kmZ

By definition, the energy o f the signal is finite meaning f x e  L2 => f j{T)->£j(T) e  ^2

since we assumed previously that f x We will additionally posit that the
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spectral density function belongs to a Sobolev class, which formalizes an assumption 

made in Section 3.2 with (A3.2.1). The assumption is f x e  W ” (c) where

w ; { c ) = \ f : l \ f m){X\pc a < c p\. (A3.3. i )

The value o f the threshold c = (AcTj | j  > J (T )) commonly found in the literature 

and discussed in Section 2 is not necessary to determine the order o f magnitude o f the 

error at this point so we let c = max.{aj k \j  > j(T )) .  This allows us to define a  slightly 

modified estimate

/ J , T , = / . Y  W -  £  <3-3-5>
j > J ( T ) k e Z

The order o f magnitude associated with this threshold is found by examining the terms 

at scale J(T) + 1 for d J(T)+lk. Recalling that cum{djk ) = a jk  +C>(2-y/27’~I) by 

equation (3.2.7). Now returning to the problem and limiting the sum as above

/ V i M = £ « > * » (* )+  £ £ ^ , t v , t W -  <3-3-6)
ie Z  j=t  k eZ

Using a Taylor series expansion with remainder 5?(x) for our function gives

/(*) = /(A) + / (l)(AXx_ A) + / (2)( a ) x̂  +

+ / ( '”>(a ) ^ ~ A  ̂ + (x -A )m+19?(x>
m\

Then consider the coefficient

a j .k  = ( f x »W j , k  )  = £ f x  (* V J.k  M *
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which can be expanded with our previous assumptions to

a j.k = £  f x  (A Vj.* M *  + • • • + £ (* -  A)(m+1)< R ( x {x)dx.

Now with

let x
and A

,*(x) = 2 7/V y.*(2 yx-Ar)
= 2 ~J t => dx = 2  ~J dt

T ‘ k  => /(A )  = / ( 2 - ' t )

which gives the expanded version o f  the Fourier coefficient to be

a J M f x  (2-7 *)j[ 2~,!2y/(t -  k)dt

/{ " (2- ' k ) [ 2 - " 2 ^ Z ^ - ¥ ( t - k ) d t

- j n ( > - k T
ml2

I 2
■y-.n ( > - * r  ~ r  '  '

1 J v -  y

+

+

+

+

Using assumption A3.2.1 gives

J^try/{t)dt = 0 V 0 < r < m

we have

In addition, if the remainder is bounded uniformly with X with the m+1 moments o f the 

mother wavelet

^ { 2 . - Jt \ t - k ) m+xy /{ t-k )d t = 0( l) (A3.3.2)

which is a reasonable assumption then
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a ]k = o ( 2 “7('n+3/2)).

We already know by Parseval’s Theorem that all the sum o f  squares o f the coefficients 

are bounded in totality and thereby at each scale j such that

£  2> L >  =
j >J( T) keZ j>J{T)

and the term with the largest order o f  magnitude occurs when j  = j ( T ) + 1. The 

conclusion reached at this point is that the order o f  the approximation given the 

Sobolev class previously defined o f spectral density functions with matched wavelet 

basis is

IMf - ££«;, -
j > j ( T ) k e Z  ( 5 . 5 . 1 )

Now we can return to estimating the order o f the error, given that we have the 

truncation error to the function

/„ \ f  J(T)
c u n ^ ATp ) ) = c u m

J(D
z :

k eZ  j=i keZ

Using the previous results (3.2.6,.7) for the expectation o f  the wavelet coefficients and 

in conjunction that the error that are uniform in frequency then
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cum(fJ{ r)(A)) = c « 4 2 ® * ^ W + Z Z ^ ^ ( A)
\ _ i e Z  y = /  * e Z  y

•/ ( r )  /  \

Z cwm(«* V/.* M + Z  Z  c u m \a j.k w j m  U)
* e Z  j= l k e Z

J (T )

Z a * ^ W + Z Z  a y.*^v.*(;l) +
< f c e Z  j= l k e Z

2o(2-"JrH)l<i,J(/i)+'f;>2o(2-";r-1V̂ (A)
j t e Z  y = /  i e Z

(3.3.8)

Using the Wavelet Basis Lemma (A. 1.23 & 24) this can be reduced with our previous

definitions simplifying to

^ ( r ) W ) = / W - ^ ( r )  + C>(r-,)Z ^(2 //2A - ^ ) + X C,(7’" ')Z ^ (2 y/2A-A:) (3.3.9)
i e Z  / = /  * e Z

The magnitude o f the estimate has been derived

4 fj(rM))=fU)+ o(2-y(r)(m+3/2,)+ o(((y(r)+2) -  /) /  r). (3.3.1 0 )

Making a comparison with (3.1.12) we see that there is a term with 0 (1 /T)

which is what would be expected. The additional components o f J(T) is associated

with the number o f scale summations. The added bias in equation (3.3.9) due to

thresholding is small by comparison. The total bias o f this approximation

asymptotically tends to 0 as J(T )/ T —> 0 and T  —> oo. In the next section we will

examine the covariance properties.
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3.4  Second Order Cumulant Properties (Wavelet Coefficients)

We developed a new estimate based on wavelets in the last section, which gives 

control over the number o f  coefficients in the wavelet expansion. Equation (3.3.10) 

showed that the bias would be small and can be controlled. In this section we calculate 

the second order cumulant properties of the coefficients. Once this is determined then 

the final analysis can be made as to the consistency o f the new estimate defined in 

equation (3.3.6).

First, the covariance o f the wavelet coefficient estimates must be derived. The 

starting point begins by recognizing there will be three different types o f  second order 

cumulants to investigate which are related to the scale and location o f  the coefficients 

cum(ak, a k ), cum{(kk, a rk. \  and cum{pcj k ,aj.k.\

However, the derivation for any o f  the above will follow the same structure and the 

solutions will be very similar. We will show the solution containing only the mother 

wavelets coefficients to limit a fair amount o f duplication. The covariance of the 

mother wavelet term is by definition

cum(dj k , a jV ) = cum(fz (A,), f x (A2 ) \ / j k (A, ]tyr k. (A2 ]d^dA 2 . (3.4.1)

Using (3.1.21) we can rewrite (3.4.1) in the following way
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cum(dj k , a rk.) = [ (2jt0)~2 [ l- y (o)f Var{kx (o))

+ P ~4 QiA, ~ u x)q{A2 - u2 )cum(fz {ux\ f z {u2 jjdu^u ,
+ (2x p Y  ^Q (A{ - u)cum(fz («),Rx (o))du

+ (2tt/3) ' £ Q(A2 -  u)cum(fz (u \R x (oj)du \ r ]k (A, \ r yk. (A2 )dA,dA2, 
= Tl + T2 +T2 +T4.

(3.4.2)

We will follow the procedure used in Section 3.1 with the first term in the above 

equation

r, = ^ ( 2 ^ ) " 2[ l - K 0 ) r ^ r ( A v ( 0 ) K * ( ^ V / .* U 2K ^ -  (3-4.3)

We know from equation (3.1.23) that this term before the integration was (XT'1) and 

when integrated with the mother wavelet as above will be exactly o{Sj y S kJc. I T ) using

Appendix A. 1.7.

The fourth term is the most important because of it’s magnitude which we have 

seen before in Section 3.1 and integrated here as

r 4 = / r 4 £  QiA, -  w, )Q(A2 - u2 }y j k (A,y^r r  {A2 )Cum(fz (ux), f z {u2fyu.du^dA.dA^.

(3.4.4)

We develop the following equations utilizing the function Q(x) as in (3.1.15)

(«) = i  e(A -  u = y I f  ( 2 ) - J Y ( 2 -  „ ( t y *  and (3.4.5)

* & ( « ) - = (3-4.6)

Since <p,ky/jk and T e Z, then <pfk , i//fk e  n  i , . The functions are

uniformly bounded in frequency with
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'/'%(l-) = V l f U ) + o ( 2 - ‘n ), (3.4.7)

t ? A * ) = 6 * W  + ° ( 2~"2} (3-4.8)

Utilizing equations (3.4.5 and 6) gives the following

n = P "  I  ¥ %  (A, U X/z & )}«,<«,

which in expanded form is

r4 = P~* ^ («, )̂ r>- (w2 )I2̂ 7’"1 / i4)(". 7-w,, «2)]
+ 7’“l|/z(".)(2[Ar(“ ! + « 2)+ A r (-« , + w2)]

+ 0 ( D ^ r [ 0 r ( “ , + « ! )+ O r(“ , -« :) ]2 jzT ~

+ o m ^ } - y [DT( - U] - « , ) + d , . ( - u, +U!)]

+ 0 ( l) (2 ^ r2)H}/w1c/w2

=  ^4,2 +  ^4,2 +  2 4.2 + ^4.2 +  ^4 .2 *

(3.4.9)

The first term T4 , o f this expansion is o{2~{J+JinT~l ) since f z ^ (u l , -u x,u 2) e  Lx. The 

third and fourth term T4.3 and T 4 . 4  are o f  the same order o f magnitude since the spectral 

density f z and Dt /T are uniformly bounded. The fifth term is obviously of smaller 

magnitude compared to all others discussed so far which leaves the second term T 4 . 2  to 

be dealt with. Utilizing the Fejer Kernel Lemma found in Appendix A.2

Ar (4>tt = 2xy,% (0)+ o {r ' 2) (3.4.10)

will result in
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(3.4.11)

As before, with the cross-variance terms T2, T3 we can use the Cauchy -Schwartz 

inequality.

The final result leads to the three 2nd order cumulant estimates

cum{ak ,a k.) = 2 xj3~4T-' J\ \ fz (A)\2

x ( t fk (X) + f t  ( -  /!)> ? , {A)dA (3.4.12)

+ o ( r - ') + o ( 2 ' / r " 1)i

cum(ak , a yk. )=  _[|/z ( A f

x W + ¥ '{ * ( -X i l& i f id A  (3-4.13)
+ o(2(/"y,)' 2 r H)+ <9(2_0+/,/2 r ~ ')

cwm(a,*,a,*.) = j [ | / z (^)|2

x M  + (“  (A)dA (3.4.14)
+ o(2ij-J')/2T ~l)+ o (2 -(r+y)/2 T~l)

These are consistent estimates of the wavelet coefficients if we let 2JT~X —> Oas 

T —> 00 with 0 <1 < j  < j '  without loss o f generality. The first term in each o f the 3 

equations are uniformly bounded across k  with /_ e  Lx .
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3 .5  Second Order Cumulant Properties (Spectral Density Estimate)

In this section we calculate the statistical properties o f the estimate defined in 

Section 3.3 related to it’s second order cumulant. The conditions from Section 3.1 

apply as well as the assumptions from Sections 3.1 through 3.4. Recalling the form o f 

the estimate from (3.3.2)

J{T)
fj(r)to =

k e Z  j> i IcgZ

The covariance o f this estimate is

cum(fJ{r)( X \ f J{T)(co)) = X Z ^ '.*  to#/*- {a>)cum{ak, a k.)
k e Z  k 'z Z

•/ ( r >  /  \+ Z  Z  Z  V J *  to t> i*  ( & ) c u m { a j . k  k•)
j= l k e Z  k '^ Z

J ( T )  /  \  / * >  c  i  \

j'= t k ’e Z  j f c e Z

Z Z  Z  Z  t o r s *  )

j ’=l k ’z Z k e Z  
J j T ) A T )

+
j= l j'= l k e Z  k 'e Z

= t x+ t 2 + t 3 + t a.

We observe that the 2nd and 3rd term o f this expansion are duplicates so there are only 3 

unique terms.

First recall the covariance terms from equations (3.4.12, 13, and 14). We know 

from equations (3.4.7, and 8) that the mother and father wavelet are significant terms 

and utilizing A. 1.19 through 21 bounds the integral o f  these components. Therefore, 

all the individual cumulant terms are o f  0 ( T l) or smaller. Now to sum all the terms in 

the expansion with
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cum

o (r _1)+

+ 2 2 2 ^ W M * > ) |  o(2(/“7)/2r ‘')+
o (2 '0+,,/2r ' 1) 
o (t ~' )+
o ( 2 (,- j )i 2 T - ' ) +  

0 ( 2 ~ {j +, ) , 2T ~ 1)

+ i f f  2  2  ̂  U V,,- H 0 (2^ 2 r-)+
1=1 j '= lk * Z k '* Z  I  o ( 2 ~ U  + J ) / 2 T ~ ' )

J O )

+  2 2 2 y ' r A ^ . M
j'= i k ’e Z k e Z

(3.5.2)

Utilizing A. 1.24 and A. 1.25 further simplifies to

cum

J ( T )

+  2 I

\

J ( T ) J l T )

+ z i]=t1=1

+

o(2 l T-')+  
o(2 'T - ' ) + o ( t - ' ) )  

o(2u+I)/2 T-')+  
o(2 ‘T-')
o ( t - ' )  

o(2u+j)/2 T~')+ 
o(2JT~')+
o (t ~1)

(3.5.3)

Therefore collecting significant terms o f  the covariance estimate and defining a 

common element J'(T) = j ( T )  + 1-1  gives
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cum[fAr){ x \ f AT)(o>))=o{2Ji-T)T - ' )+ o ( r ( 7 ’)27 " ')+ o ^ i T ^ T "  ).

(3.5.4)

The 2nd order cummulant asymptotically tends to 0 as 2J(T)T~x —» 0 andT —> oo.

Summarizing

Theorem 3.5.1 Given the conditions o f the process and the sampling scheme described 

in Section 3.1 with assumptions A3.1.1, A3.2.1, and A3.3.1,.2

e ( / j (t M ) = f x  U ) + o(2-J(n,m+3/2))+ o((j' ( T ) + i)r-')

The bias o f  this approximation asymptotically tends to 0 as J ( T )/ T  -»  0 and T —> oo. 

Theorem 3.5.2 In addition to the conditions and assumptions o f  Theorem 3.5.1 we 

add assumptions A3.1.2,.3,.4 to obtain

cum(/AT){ X \ f m {(oi) = C(A,a>,u)du

+ o(j'(7’)2'/(r)7’”1)
-hG((j’(r))2r-')

c(a ,eo,u)e Lx = o { lJ {T)) and the 2nd order cummulant asymptotically tends to 0 as 

2-/(n r~ ' —> 0 andT —>• oo.

Theorem 3.5.3 The estimate f J(T) (X) is a consistent estimate o f f x {X)given Theorems 

3.5.1, 3.5.2 and by letting 2 J(T) = T a ,0 < a  <1 will achieve a rate o f  convergence

O
 ̂ —2m N
J ’ l+2m

\  y
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4 Simulated Studies

The following section was generated by simulating randomly sampled time 

series data. This was done in order to compare methods that estimate the power 

spectral density and to illustrate the relevant aspects o f  the analysis.

Several programming languages and statistical packages were used to prepare 

this section. The applications and libraries o f significance are found in Splus, Splus- 

Wavelets, Matlab, and the Matlab-Toolbox. These packages have specific capabilities 

associated with vectorizing equations, which made the process o f simulating the 

functions at least tractable. The vectorization in Matlab made it possible to develop 

and display some o f the asymptotic features found in the following sections without 

spending an inordinate amount of time waiting for the results.

All the figures are located at the end o f this section. There are a number o f 

subplots per figure and the reference letter o f the subplot termed a panel follows a left 

to right, top to bottom orientation. Using this ordering convention, if a figure has 3 

subplots then panel A will be the uppermost plot and panel C will be at the bottom o f 

the page with panel B in the middle. If  there are 6 subplots on the page with 3 rows 

and 2 columns then panel A will be the upper left plot and panel F will be the lower 

right plot.
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4.1 Scale and Signal Energy

Given a function f(x), it is possible to decompose the function into wavelet 

components, which represent the signal strength across scale. This is analogous to

periodogram we can determine the amount o f energy that exists in the signal within a 

given bandwidth. Unlike the frequency domain, which is represented globally by the 

periodogram, the wavelet representation provides localization capability. The scale 

however is directly analogous to the frequency (i.e. the smaller the scale, the higher the 

frequency o f the signal at this specific point in the domain).

To represent the energy contained in a signal, it is useful to define a common 

engineering term as the SNR. The SNR represents the Signal to Noise Ratio defined as

The resultant logarithmic term is coined as dB standing for decibel. The original

transmission/communication and the fact that hearing is a logarithmic function. The

This is by no means the only definition o f  SNR but it is not uncommon. Sometimes the

transforming a time domain signal into the frequency domain. By examining the

meaning o f this term is buried in the past but it has a lot to do with vocal

mean (p.) o f the signal is used in this case with the standard deviation (a) o f the noise.

peak signal is used which might be a better definition if one is to discern peak signal

strength.
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Now to investigate variations in SNR and its implications associated with scale 

and signal compression. Initially, we can hypothesize a constant added to white noise 

that has a relatively large amount o f signal as compared to the noise. Figure 4.1 shows 

a 20 dB SNR realization. We take roughly 512 samples from an IID(j i  = 10, cr = l) 

and transform into the wavelet domain. The following 2 equations represent this 

transformation. The first equation is in component form and the second is in vector 

form.

/(* )  = Z  «*& (*) +
k e R  j'Z i keR

L =
j*

The scale spans [/, J ], which is a different ordering presented in Section 3 and utilizes a 

slightly different definition o f the wavelets than what we have presented before by

<f>k { X )  =  2 - J , 2 < p { 2 - J A - k ) ,  

¥ , . k  M  =  2 ~ J / 2 y / ( 2 ~ J Z - k ) .

We can determine the amount o f  signal at each scale by utilizing a dot chart with the 

energy at scale defined in the following way

E1 = V /  = e  = e ‘ +’£ e 1 .
&  k = 1  £  k = 1  y = I

And, we can compare the energy o f the original signal with that o f the ordered wavelet 

coefficients with
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£ w r ( « ) = 7 l fl!(>) / = 1,2,... JV,
£ / = !

E d o M  = - p l X  1 = 1,2,...JV.E t f

All the above definitions can be found in the Splus-Wavelet package. The father and 

mother wavelet utilized in the analysis in this section are the symmlet. Returning back 

to Figure 4.1, we point out that the total number o f coefficients is 512 which is 

equivalent to the number o f samples simulated and the number o f  coefficients at each 

scale are

d x => 256
d 2 => 128

—  3 => 64

—  4 => 32

—  5 => 16

— 6 => 8

—6 => 8

Panel A simply plots the signal and it is relatively easy to see that the mean is 10 and 

the standard deviation is about 1. Panel B exhibits the dot-chart and points out that 

almost all o f  the energy is contained in roughly 8 coefficients o f s 6. A minor amount is 

located in d x. This is not surprising since the s coefficients represent the low pass filter 

sum o f the energy which contain the mean o f  the entire vector whereas the mean o f the 

d vectors are zero. The signal to noise is such that the relative energy in the 

differencing coefficients d represents most o f  the noise. Panel C depicts the energy
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plots which shows that most o f the signal is contained in 8 coefficients which from 

panel B could only be s 6. We can literally throw away all other coefficients and 

approximate the original signal very accurately with just s.

The next 2 figures 4.2, and 4.3 show similar information as previously described 

in the first figure. We can see that the signal to noise ratio is decreased to 0 then to -20 

db. As we decrease the signal, the energy is transferred from the s coefficients to the d 

coefficients such that the energy represents 50% in each for figure 4.2. We could 

effectively take the previous 8 coefficients to approximate the signal and the results 

would be a significant decrease in noise as outlined in Section 2.4.

The last figure 4.3 is meant to point out that white noise transformed to the 

wavelet domain remains white. With a negative 20 db we see that when pure noise is 

passed to the wavelet transformation we would expect to see pure noise as an output. 

There are no compressive capabilities, meaning that the signal is spread equally across 

all coefficients. The same variance reduction could be accomplished with this signal as 

previously discussed.

4.2 The ARMA(2,2) process

The next figures examine the spectrum o f a time series process composed o f an 

ARMA(2,2) superpositioned with Gaussian White Noise. The process has been 

randomly sampled f z and reconstructed f x . It is used extensively in this dissertation 

to examine relevant properties. The signal has peaks and troughs in the frequency
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domain as well as near constant areas across the bandwidth. We let {e,,Zt}eW N(0,l). 

The sequence is defined by

Yt +axYt_x +a2Y'_, = b0s, + bxs,_x + b2e,_2 

then white noise was added to obtain

X ,= Y ,+ c0Zr.

We let {ax,a2} = {0.2,0.9}, {b0,bx,b2} = {l,0,l}, and c = 0.5. The function is found in

Neumann, [1996] and was utilized here since it contained peaks in the power spectrum 

as well as relatively flat areas.

Figures 4.5 through 4.7 examine the energy contained in theoretical functions o f 

the power spectrum as well as a single realization. The theoretical functions show that 

most o f the energy can be contained in a few number o f  coefficients somewhat similar 

to the 20db SNR previously discussed. It is also apparent that the vectors 

d x, d 2 contain no apparent signal energy while d 3,d 4 contain some o f the signal. The

realizations on the other hand are more similar to the Odb SNR figure. Naturally, their 

energy is spread across the spectrum.

Normally we would not know the information discussed in the previous 

paragraph but it does remind us that when comparing the merits o f one technique to 

another that certain results well depend on the underlying signal involved in the 

analysis.
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Figures 4.8 and 4.9 show f x , and an estimate f x with their corresponding 

components in each of the wavelet vectors. This is what one realization looks like 

before and after thresholding. The largest 8 coefficients in d l,d 2,d 3, d 4'were kept to 

show the smoothing effect as well as the peaks that remain distinct and sharp.

4.3 Comparative Simulations

Figures 4.10 to 4.25 show a multitude o f data and results. Two figures will be 

discussed in detail then the results will be summarized in the next section. Basically, 

kernel techniques will be contrasted with wavelet techniques. The kernel technique will 

utilize 4 band widths, which are 1, 2, 3,and 4% o f  the span. The wavelet techniques will 

utilize 4 scales. The first technique will incorporate truncation for 1 through 4 scales. 

The next wavelet technique will incorporate thresholding across 1 through 4 scales. 

The last technique will compare block thresholds for 1% o f the span across 1 through 4 

scales. In all these, uniform and random sampling results will be contrasted with each 

other.

Figure 4.10 has 3 subplots. Panel A shows the theoretical power spectral density 

for uniformly and randomly sampled data. The point process utilized is Poisson. These 

theoretical curves will be utilized in calculating the mean square error and plotted 

against the estimate o f the functions for each o f  the 4 techniques contrasted in this 

section. Panel B compares the mean squared estimation error for 3 curves spanning 10 

to 50 simulations o f  the power spectral density. The largest error depicted represents
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the simple average o f the simulation runs. The mean squared error is calculated for the 

simple average. The curve with the circle o data points represents the 1% kernel 

smoothed estimate that is then averaged for the number of sample runs. The next curve 

with + data points represents the 2% kernel smoothed estimate. Panel C contains the 

same information as panel B but for Randomly spaced data.

Figure 4.11 contains 6 subplots that represent 50 realizations that have been 

averaged and compared to the theoretical results. Panels A, C, E correspond to 3 

points from panel B in Figure 4.10. Similarly, panels B, D, F correspond to 3 points 

from Panel C in Figure 4.10. All the plots that follow are defined in a exactly the same 

manner with the technique varying across scale.

4.4 Relative Merits

We do not show an aliased signal in this section. The discussion and 

derivations in Sections 1, 2 and 3 point out that uniform sampling is susceptible to 

aliasing. Random sampling mitigates this problem. The results do support the 

theoretical developments in this paper. The bias and variance asymptotically tend to 

zero the larger the sample size.

It is not surprising that kernel techniques have slightly better integrated MSE. 

However, they tend to oversmooth the peaks whereas the wavelet techniques do better. 

If specific areas o f the density namely peak effects are o f interest then wavelets will 

tend to be a better analyzing tool thereby agreeing with the referenced literature.
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Signal to Noise Ratio = Odb
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Signal to Noise Ratio = -20db
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Theoretical Fourier Transform fx
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One Realization of fx
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One Realization of fz
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DWT Threshold Example for fx
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Figure 4.9 Reconstructed Spectral Density fx with few Wavelet Coefficients
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Figure 4.16 MSE of Truncated Scales 3, 4
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Figure 4.17 Reconstruction error under Truncated Scales 3, 4
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Figure 4.19 Reconstruction error under Hard and Soft Thresholding Scales 1, 2
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Figure 4.21 Reconstruction error under Hard and Soft Thresholding Scales 3, 4
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5 Conclusions and Future Research

Power spectral density estimates based on randomly sampled data provide 

superior estimates to that o f uniformly sampled data when considering the effects o f 

aliasing. The cost associated with random sampling is an increase in variance due to 

the sampling scheme, although the optimal rate o f convergence is the same as uniform

sampling. The estimator f j^ { X )a s  defined in (3.3.6) has been shown to achieve the

optimal rate o f  convergence for a Sobolev class (A3.3.1). Simulated power spectral 

densities based on randomly spaced time series data have been compared to kernel, and 

wavelet estimates that have been truncated, thresholded and block partitioned. Both 

the kernel and wavelet estimate are asymptotically consistent, but the wavelet estimates 

are able to enhance peak frequencies more effectively than kernel estimates.

It has been proposed [Hall et. al., 1998] that a larger functional class 

(specifically the Besov space) o f data can be optimally analyzed if block thresholds are 

utilized for the wavelet coefficients by

J{ T)  f  f
/v,r,('0 = X<i*<M;L)+ Z Z  Z > t  \ •

i e Z  j~zl k ' e Z \ { k ' )  V  L J ^

This assumes that the coefficients within a certain region are all highly correlated or 

homogenous. However, the tradeoff is that a logarithmic penalty is mitigated with the 

block vs. single coefficient approach. An initial examination was done by simulation in 

section 4 and it does appear to hold promise. A theoretical analysis and simulation 

study could be performed to confirm this for randomly sampled power spectral
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densities. In addition to block thresholding as proposed the form o f  the threshold could 

be adjusted based on local conditions instead of applied across the entire scale.

Another avenue o f  investigation might utilize the density itself to help impose a 

constraint on the estimation problem by

J ( T )  (  f

k e Z  j i l  k ' e Z

The density estimate is always positive and if by thresholding the resultant density 

becomes negative, then this would further narrow the decision on the threshold level or 

the size o f the block partition. This becomes theoretically hard to analyze but certainly 

relatively easy to implement in a data driven algorithm.

Lastly, thresholding decisions are normally based on conditions associated with 

noise assumptions. Choosing the scales to threshold indirectly utilizes signal 

assumptions. It is possible to hypothesize directly a signal to noise ratio SNR as 

discussed in Section 4 and use this as the basis for a thresholding parameter. There is a 

large body o f  existing literature that can be utilized in the development o f this approach 

and it seems a logical extension to the very general approach of wavelet density 

estimation.
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Appendix A

This appendix contains 2 Lemma’s used in Sections 3. All o f the Lemma’s 

presented and derived in this section relate to bounding components for the spectral 

density estimate.

A .l Lemma -  Wavelet Basis

Axioms and Identities (A. 1.1 through A. 1.7) will be stated but not derived 

which are related to an orthogonal multiresolution analysis (MRA) [Mallet, 1989 and 

Meyer, 1993]. Then identities by derivation (A. 1.8 through A. 1.30) will be stated 

followed by their derivation.

Axioms by Construction

The functions <{> and ij/ are denoted as the father and mother wavelet have the following 

properties

(A. 1.1)

(A. 1.2)

The functions <j> and \|/ can be scaled and shifted in the following manner

(A. 1.3)

(A. 1.4)

where /, j ,  k& Z .
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Identities by Construction

Given 8 ... = i 1 J J' then 
[0 j  *  /

[i <t>,,Ax)(f>lk(x)dx =Sk.k ,

\t <Pj.k(xyi/j k .{x)dx=0,

 ̂¥j,k {x)dx =Sj y Sk k. .

Identities by Derivation

l<f,iA x )dx  = 2~1'2

l ^ j . k(x)dx = 0

l \ ^ { x \ d x  = 0 { T 112)

b\¥'jJc(x]dx = o (2 ~j n )

Let A e 9? for equations A. 1.12 through A. 1.24.

||^ (x  + A ) y j k ( x ] d x < l

I Y j* (x + A (xjfbc < 1
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(A. 1.5) 

(A. 1.6) 

(A. 1.7)

(A. 1.8) 

(A. 1.9) 

(A. 1.10) 

(A. 1.11)

(A. 1.12) 

(A. 1.13) 

(A. 1.14)
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y/j. k’(x + A)j|~

+  X  Z 11 V r r  (x  +  A V ;.*  t o * | 'JZJ k*Z'

0 - Z|L^'(x + AVa(xH2 " K>'(x+Af

0 -  S | l ^ / r ( X +  A V y , * ( ^ |  ^  ||^ / i4.(x + a | 2

0 -  Z Z | l ^ / . * ' ( *  + AVy,*(*>&| £  +
jsl kez' '

0 ^ \ i lf/ y.k-{x + ^ j j c{x)dx < ^ y /2t {x)dx =  1

1̂ /.*' (x  +  A I  -  z l i * . * -  (x  +  A V / t (x>&|

+5 S l K  .(x + a V 7. * ( ^ |
y2 / k e Z

0 -  Z | I 6/?̂ - ( x + a K * (x)£&| ^  IK*-(x + a)||2

.(x + A V y .* ( ^ | ^  |^ / r (x + A |2 

0  ~  +  ^  | \<fil,k-(X + Af
j S J  k e Z '  1

0  *  | & l  f . ( x  +  \ \ P L ,  ( x ) * |  <  J j  (4,21 ( ■ ') '*  =  1 

Z M 4 = o 0)
k t Z

£ M 4  = ° ( 2 " ’ )
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(A. 1.15)

(A. 1.16) 

(A. 1.17) 

(A. 1.18) 

(A. 1.19)

(A. 1.20)

(A. 1.21)

(A. 1.22)

(A. 1.23)

(A. 1.24) 

(A. 1.25)

(A. 1.26)



Z K * M |  = 0(1) (A. 1.27)
ieZ

2 > ,.* (* ) | = o (2J/2)- (A. 1.28)
IceZ

2 > 2,.*(r)=<9(2‘ ) (A. 1.29)
keZ

Y j V'2A x )  = 0{2 j ). (A. 1.30)
t e Z

Proof -  The first derivations pertaining to A. 1.8 through A. 1.11 will use A. 1.1 through 

A. 1.4. With a change o f variable we have

= 2 " 2 j X 2' x~ k)dx
2 - , , 2 \ \ j > ( z ) d z  =  2~//2.

Similarly for the mother wavelet

=  2 J/ 2 J^(2'x - k ) d x  
= 2 ~J' 2 ^y/{z)dz = 0.

To find the order o f  magnitude o f the absolute value of the mother and father wavelet 

we use the fact that they are {<p, Then

Similarly for the mother wavelet

J lK .tM l*  = 2" 2 J ^ (2 '* -tj |c6 r
= = 0 ( 2 - " ’ )
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The next three derivations for equations A. 1.12 through A. 1.14 use the 

Buniakowsky-Schwarz inequality [Beckenbach and Bellman, 61] to obtain the 

magnitude o f each integration with

+ -  i l \ 0 'A x  + A f  d x l k j A x f

i  K *(*  + A)0,.*.(*)\dx < {̂ \<pIJc{x + & f  (k \̂<f>lk. ( x f  ck) = 1 ,

i\v / JA x + A ^ / r A x }dx ^  ( i k ^ ( x + A )|2^ i K - . - t ( x )|2 A ) = l -

Expanding a function f{ x )= y /J.k.{x + A) in the wavelet domain and then

applying Parseval’s Theorem leads to equations A. 1.15 through A. 1.18. The 

components o f  A .I. 15 are individually stated in the next 3 equations. We start by 

expanding

/( * )  = Z W +  Z  Z a jjW j*(x ) ■ieZ /SjZooteZ

Using Parseval

JceZ /£j£aokeZ

Similarly, expanding a function f ( x )  = 0/k.(x + A) in the wavelet domain and then

using Parseval’s Theorem leads to equations A. 1.19 through A. 1.24.

The last set o f identities bounds the summation o f the father and mother 

wavelets and their norms stated in equations A. 1.25 to A. 1.30. Since {</>, if/} e  Lx c\ Lx

we hypothesize a function g(x) such that \<p\, \i//\ < g  e  Z,, where g is montonically 

decreasing as \x\ —> oo . The summation o f this function is bounded by
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2 > ( a  + m ) ^ c +  lg (x )d x , A e / c .
meZ

Since ^  [^(A + H  < Z s ( A + /w) and likewise ^ |^ ( A  + < ^Tg(A + m) then
me.Z m e Z  m eZ  m eZ

'E M ( x - k ) = °Q )
k e Z

£ |^ ( x - £ ) |  = 0 ( l)
jfceZ

The solution for the above at scale follows the same guidelines which gives

keZ  k e Z

Then for both the father and mother wavelet we have

Z M * 4 = ° ( 2"!)
keZ

X K * fo |=0(2'/2)’
keZ

The same approach utilized for A. 1.27 and A. 1.28 are applied for the sum o f squares of 

the mother and father wavelet which completes the proof.
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A.2 Lemma - Fejer Kernel

Given the one form o f the Fejer Kernel

Ar (A) = 7—[ZJr (A)(3 =
T sui2

'A T '

'A T '

functions defined in (3.4.5), y /,r  then the following relationship is true

£ { A - u)At {u + z)du = lxy/% (A  + z)  + 0 (2 ''12). (A.2.1)

Proof: The integral o f the Fejer Kernel is £  A T{A)dA = I 71. Let

Mt = I + *)du -  2Jt\}/Q] k (A + z ) . (A.2.2)

By change o f variable and the utilization o f the Fejer Kernel form previously stated we 

obtain the following

M t  = I  U  -  w)at  (w + z)du -  2 xi/fJk (.A + z)
= £  ¥%  {A + z -  x ) A t  (x)dx -  2K yQ] k (A + z)

= I  U  + z - x ) - \ f / Qjk (A + z )}a t {x)dx.

Now we utilize another change of variable with u = xT such that

T  sin
A7-(x)c& = ----    ̂ 2 '  d x— u-^ ~

sin'

xT
2

* A (u)du =

u

■du

The quantity MT transforms to
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M t = £ (A. + z - x ) ~  y/Jk (A + z)}a t (x)dx,

= | \ v % [ A + Z ~ f  ~ &  + Z) |A("V W-

It is useful at this time to define a term considering scale by

y/Q{2Jx  — k) = y/<j k{x^/2J' 2 = y/{lJx  — k ) — ^T (x  — u)tf/{2Jx - k )dx . (A.2.3)

The final form o f MT to analyze is

M T = 2 " 2{ L < ^ 2 '(

-  v n i W y  —
2  Ju^

— y/Q (2J (A. + z ) —kyt&(u)du

- y t Q{y)\*fa)du

(A.2.4)

where y  = 21 (A + z) — k . Let ww (x) be the modulus o f continuity o f y/Q then

M t < 2 JI2 j^W", J  A(u)du. (A.2.5)

The integrand in A.2.5 —> 0 as T  —> oo and is bounded by a constant A e  Lx. Hence by

dominated convergence 2 1 M T —> Oas T —► oo.

COROLLARY LFK-A

Without loss o f generality we can make j a  function o f  T such that j=J(T) just so 

long as 2J^  IT  —> Oas T  —> oo. Then the following statement is true with the above 

considerations from the preceding Lemma with
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V%T\k Q- -  «)Ar (w + z)du = 2xy/°(r)k (A. + z ) + o { l J(T)l1). (A.2.6)

COROLLARY LFK-B

Referring to the Fejer Kernel Lemma, it is possible to replace y/'jk with any of

the following functions r,if/jk,<plk utilizing the same assumptions and achieve the

following results

T -> M t = o(l)
(f>lJc -► M T = 0 (2 ' /2) (A.2.7)
V'jjt M t = o ( 2 JI1)
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Appendix B -Fourier Transform

Definitions, Identities, Notation, and Formulations

The Fourier Transform and its Inverse Fourier Transform  can be represented by

=  b ^ g i x ^ ,

where a*b=27t. It is assumed that g(x) <= Lx r\ and g (x \g '(x )  are piecewise 

continuous in every finite interval. The sign o f the exponential is arbitrary and another 

common formulation o f  the two can be defined as

« W  = jy - 2-“r G(r)dy,

G(Y) = f y " rg(x)dx.

If  we look closely at the definition and try to provide a physical meaning to the 

variables x and y then by giving x the dimension o f  time and Y - 1/time or cycles per 

second we have a natural transformation between the time and frequency domains. 

This means that y would refer to the angular frequency in radians per second. The 

constant 2 % is the dimensional transformation between the time and frequency domain. 

This constant in the inversion makes the units consistent such that

o v  2;r y  =  2.K1 = — ,o r
x
2;rco = 2 in = — .
T
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Conventions for this paper with respect to the Fourier Transform  are

g(t) = ^ e ‘,<0 G{(o)da),

G(a>) -  * (/)* ,

where t  refers to time and o> refers to radians/second. The symbol A is used 

consistently to refer to the angular frequency in radians/second.

The Fourier Transform Pair is defined as

s(*)<=>G(y).

This by definition means that the Fourier Transform o f g(x) is G(y), or in other words

G(y) =
#(*) = F~x (G(y)}.

And subsequently an identity is possible by applying the inverse transform with

g U )  =
G(y) = f j r ' I c W } }

The Convolution Theorem  and its Proof start with the convolution o f  two functions 

such as

g *h = ^  g(u)h(x -  u)du

It will be shown that

F {g*h}  = F{g}F{h\,
=  G{(o )h {co)l

We have by definition o f the Fourier transform
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G(co)= £ e g(u]du,H(co)=  £ e laiuh(u)du,
G(co)h (co)=  ^  ^e~ ,co(u+̂ g{u)h{v)dudv.

Using a change o f variable x = v + u and the concept o f  the Jacobian from advanced 

calculus, we know that

d{u,v) 
d(u,x)

Thus by a change o f variable we have 

G{(o)H{co) =

F {[g {u )h {x -u )d u \
F {g * h \

and equivalently

g *h = f -'{g h }.

The Integral Equation involves the inversion o f the integral by Fourier Transform 

techniques. Given the equation

g(x) = h(x) + £  h(u)r(x -  u)du,

we need to solve for h(x) in terms o f the other functions. By applying the Fourier 

Transform and simple algebra the result step by step is

(g(x) = h(x) + h * r } ‘0  {G{co) = H{co)+ H(co)R{cof$,
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which assumes that the G,H and R transformations exist with the conditions already 

established then

H(a ) ,  
v '  1 + R(eo)

1 + R[a>)
= G{co)—G (g>)s {co\

We can now perform the Inverse Fourier Transform to obtain the final result which is

h(x) = g(x) -  £ #(kM x -  u)du.

In order for this to be admissible we have by definition

s(x) = F~x {S(m)},

-  F-.L*fcLl 
1 1+ * ( „ ) / ’

= F- f  F{r(x)} ]
l l  + F{r(x)}J- 

which places restrictions on the denominator.

The Correlation Theorem is very similar to the Convolution Theorem and may be

obtained with the same approach.

Corr(g,h) = ^g(u)h(u+  r)du,
<» G{co)h {co\

The bar denotes the complex conjugate. It follows immediately that the correlation o f 

a function with itself is

Corr{h, h) = \h {co\ .
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This is also known as the Wiener-Khinchin Theorem. And finally we have the 

concept o f  the Total Power o f a signal. If we define the Total Power o f a signal as

Power = ^ \h (tj'd t

then we can use the following Identities/Properties to determine a similar quantity 

under the Fourier Transform.

1 (
t—M ] — time —scaling
\a\ K a )

h(at) <=>

1 h ( ‘ )
1*1 u ,

o

h i f - t  0) <=>
h(t]e~2mfo‘ <=>

H  (bf) frequency — scaling

In particular to prove the relationship with respect to power we need two relatively 

simple properties o f the complex conjugate and convolution.

W >  «  G ( - n
g ( l ) M t )  <=.

Using these two properties gives

«  gFD* h { / \
J = £ G (-X )H ( f -A . )d k .

Now all we do is let the function h(t) = g(t) and set the frequency to 0 resulting in
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which is also known as Parseval’s Theorem. This equates the total power o f the 

signal to its frequency domain counterpart exhibiting the conservation o f  energy 

principal.

108
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