September 2003/Vol. 46, No. 9 COMMUNICATIONS OF ﬁ-lE ACM

including concepts from the forefront of technology and
making them explicit can help attract and rerain stu-
dents. The two weakest factors in this dimension were
“caprivated by the Web” and “a passion for playing com-

puter games, suggesting that such specific current activ- |

ities may not be primary motivators in the long term.

Conclusion
A key insight from this exploratory study is that much
remains to be done. The four-dimensional model of

attraction to computing suggests priorities for curricu-
o the Bald

lar elements char miche el individuals ince che feld,
At the same time, these dimensions may play different
roles in different segments of the population: female
vs. male, academic vs. industry, experienced vs. novice.
The respondents’ written comments suggest that addi-
tional factors, including money, opportunity, and job
security, also attracted them to computing.

To build on this work, it would make sense to
redesign the survey and distribute it more broadly in
several targert settings; for example, the wording of cer-
tain factors could be improved and additional factors
added. Another issue is the reliabilicy of self-reports
regarding motivating factors from earlier in the respon-
dents’ lives; perhaps some respondents answered in
ways they wish had been true at the time they made
their decisions concerning their pursuit of computing.

The results, including the model of attraction to
computing, promise to help teachers, curriculum
designers, and administrators fine-tune the ways they
recruit and retain talented students in the computing
domain. The model may also suggest how to advise
young people who are considering entering, staying in,
or even leaving the field. B

REFERENCES

1. Academic Computing and Instructional Technology Services. Factor Analy-
sis Using SAS PROC FACTOR (Usage Note: Star-53). ACITS, The Univer-
sity of Texas ar Austin, June 26, 1995; see www.utexas.edu/
cc/docs/stat53.himl.

2. Giirer, D. and Camp, T. lnvestigating the Incredible Shrinking Pipeline for
Women in Computer Science (Final Report). National Science Foundation
Project 9812016, summer 2002; see www.acm.org/women/ pipeline-final-
report_ver_2.doc.

. Henderson, P. (moderaror). Panel on Women, Mathemarics, and Com-
puter Science. At the SIGCSE Technical Symposium 2002 (Cincinnati,
KY, Feb. 27-Mar. 3, 2002).

. StatSoft, Inc. Principal components and factor analysis. In Elecrronic Staris-
tics Textbook. StatSoft, Inc., Tulsa, OK, 2002; see www.statsoft.com/text-
book/stathome.html.

i)

b

Vickr L. ALMSTRUM (almstrum@cs.utexas.edu) is a lecturer in the
Department of Computer Science at the University of Texas at Austin.

Permission to make digital or hard copies of all or parc of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for profic
or commercial advantage and that copies bear this notice and the full cication on the first
page. To copy otherwise, to republish, to post on servers or to redistribuce to lists, requires
prior specific permission and/or a fee.

© 2003 ACM 0002-0782/03/0900 $5.00

Because
usability is
no longer
a luxury -

it's a necessity.

July + august 2008 @) volume vinid

NEW VISIONS OF HUMAN-COMPUTER INTERACTION

For Subscriptions
Call 800-342-6626

Association for Computing Machinery
The First Society in Computing
www.acm.org

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9 55

54

THE RESULTS PROMISE

TO HELP TEACHERS,
CURRICULUM DESIGNERS,
AND ADMINISTRATORS
FINE-TUNE THE WAYS THEY
RECRUIT AND RETAIN
TALENTED STUDENTS IN
THE COMPUTING DOMAIN.

September 2003/Vol. 46, No. 9 COMMUNICATIONS OF THE ACM

Implications for Students and Teachers
What do these results imply for students and teachers
of computing courses? The relative strengths of the
four dimensions in the attraction model suggest cur-
ricular strategies teachers can use to help encourage
individual students to consider entering or continuing
in the computing field.

Benefit (strongest motivator). The Benefit dimension
was the strongest motivator for the respondents in the
survey, with four of the five component factors
selected as influential by 85%-96% of the respon-
dents. The most influential factor within this dimen-
sion was “the sense of accomplishment that comes
from solving the problem.” A curriculum that empha-
sizes the factors of the Benefit dimension is thus likely
to encourage people to consider entering and staying
in the field.

Science (second motivator). The Science dimension
emerged as the next-strongest motivator. The two most
influential component factors were “the logic involved”
and “the programming.” The other two factors—"“the
beauty and elegance one can achieve” and “the mathe-
matics at its foundations”—were influential factors for
75% and 60% of the respondents, respectively. A cur-
riculum blending an appreciation of the underlying
theory with an understanding of the practical skills of
programming would support this dimension.

Experiment (relatively weak motivator). The Experi-
ment dimension, a relatively weak attractor for chese
respondents, had as its most influential factor “the pos-
sibility to experiment.” The two component factors—
“gadgetry” and “having” something to push to its
limit"—were influential factors for just over 50% of
the respondents. This suggests that a computing cur-
riculum with a strong experimental aspect might help
attract people to computing and keep them in the
field, but that “tinkering” and “tweaking” activities
may have less appeal. On the other hand, [2] observed
that boys/men tend to tinker with ideas that interest
them, while women tend to focus on concepts and
skills that will help them in class. This suggests that for
some people, tinkering may help them better under-
stand concepts not presented in class. Thus, while fos-
tering a willingness to experiment and try new things
may not initially atcract people to computing, engag-
ing in these practices may make a difference in some
students’ success over time.

Vanguard (least important motivator). The least
important of the four dimensions was the Vanguard
dimension. Among its five component factors, the two
strongest were “being on the cutting edge” and “being
able to advise less technically literate individuals.” In the
context of a computing curriculum, this suggests that

the 18 facrors. To search for rela-
tionships among them, I built a
descriptive model using the tech-
I]iquE Of- Priﬂﬁlﬂr)" COIﬂPOﬂCH[
analysis, a statistical method
related to factor analysis [4]. Using
these techniques, a good model
should result in a small number of
underlying dimensions, each com-
posed of two or more of the
observed variables—in this case,
the attraction factors—such that
the dimensions have a meaningful
interpretation. The primary com-
ponent analysis resulted in a
model of four dimensions, with
each of the 18 factors contributing
to various degrees across these
dimensions.

Interpreting this model, I deter-
mined which factors contributed
most to each dimension. The
combinations of factors led me to

label the dimensions as follows Survey respondents to

(adapted from dictionary.com):

Benefir. Something promoting or enhancing

well-being;

*AnfluenceT .

Dlmensmn ¢ Factors fmm Survey

creating something that will benefit others

Benefit 85%
[0.82] using the computer to solve problems 93%
[0.77] usefulness in supporting other areas/fields 85%
[0.74] sense of accomplishment from solving problems 96%
[0.55] | ability to create "exact" solutions 69%
Science [0.87] logic involved 90%
[0.72] mathematics at its foundations 60%
[0.67] beauty and elegance one can achieve 76%
[0.56] | programming 81%
Experiment | [0.92] prospect of something to play with 76%
[0.87] | possibility of experimentation 85%
[0.81] | "gadgetry" 55%
[0.66] having something to push to its limits 55%
Vanguard [0.89] captivated by the Web 30%
[0.70] passion for playing computer games 18%
[0.65] | being in a position to advise the less technically literate 60%
[0.59] being on the cutting edge 69%
[0.47] linguistic foundations 52%

" Standardized regression coefficient, which is functionally related to the partial or semipartial correlation between a variable and the
dimension when the other dimensions are constant [3]. A value closer to 1.0 indicates a stronger contribution to that dimension.

T Reports the percent of respondents choosing the corresponding factor as either an important factor or a minor factor in
attracting them to computing.

Factors attracting ager), the data did not appear overly focused on eicher
education or industry. However, nearly 80% of the
respondents were women. Because extensive research
indicates important differences in how men and
women become interested in, enter, and remain in the

computing field (see, for example, [2]), we can now

computing.

Science. The observation, identification, description,
experimental investigation, and theoretical
explanation of phenomena;

Experiment. Trying something new, especially in order
to gain experience; and

Vanguard. The foremost or leading position in a
trend or movement.

The contributing factors generally made sense in
the context of the dimensions. The only factor for
which placement was somewhat puzzling was “linguis-
tic foundations,” which had its greatest loading in the
Vanguard dimension, though the loading was also the
lowest maximum among the 18 factors. Had I tried to
predict the placement of this factor in advance, I
would have placed it in the Science dimension. Per-
haps the phrasing of the term led to inconsistent inter-
pretations by the respondents.

Composite Profile

The composite profile of survey respondents helps
guide interpretation of the survey results. Because
about 33% of them classified their principal job
responsibility as educational and about 33% gave their
current employment responsibility as being in an
industrial setting (such as software developer or man-

ask whether the four dimensions of attraction to com-
puting would hold in professional and educational set-
tings with greater proportions of men. Future work is
needed to validate the four-dimensional model by con-
sidering whether it holds for various subgroups, as well
as for the general population.

The four-dimensional model does have potential
for explaining why individuals are attracted to the
computing field. Considering the composite scores,
respondents with higher scores on the Experiment
dimension also had higher scores on the Benefit and
Vanguard dimensions. Science had the weakest associa-
tions with the other three dimensions, indicating that
when individuals viewed the Science dimension as
important, they were less likely to view the other dimen-
sions as important, too. This outcome suggests that the
Science dimension is a more unique ratonale for enter-
ing computing than are the other three dimensions.

These results suggest that computing professionals
have a strong sense of the field’s mathematical roots and
tend to be unhampered by math anxiety. It also appears
that a love of programming, commonly cited as a key
reason for entering the field, may not in itself be an
especially strong motivator. Instead, the derived dimen-
sions of Experiment, Benefit, and Vanguard may better
explain what attracts most people to computing.

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9 53

somewhat informal, quickly put me in touch with a
large number of professionals directly concerned with
these issues. I recruited participants through several
online mailing lists, including Systers
(www.systers.org) and the members mailing list of the
ACM Special Interest Group on Computer Science
Education (www.sigcse.org). I also encouraged respon-
dents to invite their colleagues to participate, thus
increasing the international perspective; about 11% of
the respondents said they were employed outside the
U.S. Highlights of the respondents’ demographics
included:

* Given this survey was for a panel discussion on
women, math, and computer science, most of the
respondents (78%) were women;

Based on the year they reported finishing their pre-
college education (assuming it occurred about age
18), the average age of respondents was 39, with
good representation in all age categories, from
under 25 to over 60;

Nearly 90% reported havmg at least a bachelor’s
degree, over 50% a master’s degree, and 37% a
doctoral degree;

Over 50% were involved in education, either as
students (17%) or instructors (36%). About 33%
reported their principal job responsibility was in
industry, including in software development, tech-
nical management, and consulting; and

Over 50% reported having taught at the college
level, with 24% teaching both computing and
mathematics courses, 28% teaching only comput-
ing courses, and 3% teaching only mathematics
courses.

Details of the development and content of the survey,
along with the ongoing results from my investigation,
are available at www.cs.utexas.edu/users/csed/sigcse/
2002/women-math-cs/.

Attitudes Toward Math and Computing

One section of the survey focused on respondents’ atti-
tudes toward mathematics and computing by asking
how strongly they agreed with several statements.
About 75% of the respondents indicated that a good
undcrstanding of mathematics is important for com-
puting professionals; the same percentage replied that
this understandxng is also important for being able to
appreciate the concepts of computing. Only 40%
expressed a preference for programming courses over
theoretical courses. Practically all respondents agreed
that mathematics is a key foundation for computing,
Only 2% disagreed with the statement: “A good under-
standing of mathematics helps one better understand

52 September 2003/Vol. 46, No.9 COMMUNICATIONS OF THE ACM

and appreciate the concepts of computer science.”

Three statements focused on perceptions of the
role of math anxiety in undergraduate student suc-
cess in computing. Only 15% of the respondents
agreed with either of the two statements (one about
women, the other about men): “Undergraduate
[women/men] who suffer from math anxiety cannot
succeed in a computing field.” The nearly perfect
positive association between responses to these state-
ments suggests a view that math anxiety can affect a
student’s ability to succeed in computing, irrespec-
tive of gender. Responses to the statement: “Ar the
undergraduate level, men are as likely to suffer from
math anxiety as are women,” showed little relation-
ship to the responses to any of the other statements
related to math anxiety. The patterns of responses to
the math anxiety statements suggest a relationship
between respondents’ personal experience with math
anxiety and their opinions about the likelihood of
success for both women and men at the undergrad-
uate level.

About 80% of the respondents agreed with state-
ments concerning whether they enjoyed mathemarics
or were good at it. The responses shared substantial
negative association with the responses to statements
about whether undergraduate men and women suffer-
ing math anxiety are able to succeed in a computing
field. There was also a positive association between
responses about enjoyment of and personal skill in
mathemarics to the statement about whether men and
women are equally likely to experience math anxiety.

Attraction Factors

To investigate why individuals choose computing as a
profession, I included in the survey a set of 18 possible
attraction factors suggested by the literature, refining
them through a series of pilot runs with earlier versions
of the survey. Respondents rated each such factor as to
whether it had been important, minor, or irrelevant in
their personal histories.

The two most influential factors influencing
whether or not respondents pursued computing were
“the sense of accomplishment that comes from solving
the problem” and “using a computer to solve prob-
lems,” as cited by 96% and 93% of the respondents,
respectively. The least-cited factor was “a passion for
playing computer games,” influencing only 18% of
the respondents. The second least-cited attraction fac-
tor was “captivated by the Web,” influencing only
30% of the respondents. Each of the other 14 attrac-
tion factors was cited as influential by over 50% of the
respondents (see the table here).

In analyzing the responses, a complex pattern of
strong, mostly positive, associations emerged among

BY
Vicki L. ALMSTRUM

The strongest motivators
include a sense of
accomplishment from
solving problems and
programming; the
weakest include being
captivated by the Web
and a passion for

playing computer games.

WHAT

IS THE

ATTRACTION
TO COMPUTING?

WHAT MOTIVATES

STUDY COMPUTING?
CURIOSITY ABOUT THE UNDERLYING
CONCEPTS? THE FIELD'S POTENTIAL
USEFULNESS IN OTHER AREAS? PRO-

ANYONE TO
A NATURAL

GRAMMING? THE ABILITY TO ADVISE
LESS TECHNICALLY LITERATE COLLEAGUES? BUILDING
WEB SITES OR DESIGNING SYSTEMS, INCLUDING VIDEO
GAMES? AFTER SEEING SUCH PREFERENCES CITED IN
ARTICLES AND BOOKS AS COMMON KNOWLEDGE, I
BEGAN SEEKING EVIDENCE THAT WOULD SUPPORT OR
REFUTE SUCH STATEMENTS AND IDENTIFY THE FACTORS

THAT INFLUENCE WHETHER OR

NOT INDIVIDUALS

CHOOSE TO ENTER AND STAY IN THE FIELD.

In 2002, as I prepared to partic-
ipate in a panel called “Women,
Mathematics, and Computer Sci-
ence” at the annual SIGCSE Tech-
nical Symposium (3], I heard and
read a variety of assertions about
the factors attracting and repelling
students to and from the comput-
ing field. The striking lack of evi-
dence supporting most of the
assertions prompted me to design
a survey to gather darta that might
shed light on the issue. The survey

was exploratory in nature, with the
core set of items based directly on
statements derived from a variety
of sources. 1 also included irems
that would allow me to profile the
respondents and analyze the data
based on various characteristics,
including gender and highest aca-
demic degree completed.

Nearly 500 computing profes-
sionals from the U.S. and other
countries completed the survey.
The sampling method, though

ILLUSTRATION BY JEAN-FRANGOIS PODEVIN

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9

51

for various client and application disciplines. Statis-
tics and empirical methods were also recommended;
personally, I would also add linear algebra.
Advanced mathematical courses, -including graph
theory, combinatorics, theory of computing, proba-
bility theory, operations research, and abstract alge-
bra, might also be required, depending on the goals
of the program and the needs of individual students.

Mathematically oriented software engineering
courses today cover formal specifications, formal
methods, mathematically rigorous software design,
software verification and validation, and software
models and model checking. As software engineering
matures, the word “formal” will disappear; it is rarely
used in traditional engineering where formal
approaches are the norm.

Specific material varies by degree program. How-
ever, an important goal is to ensure foundational
mathematical concepts are introduced early and used
and reinforced in computer science and software
engineering courses in the same way continuous
mathematics is used and reinforced in traditional
engineering courses. It will, however, take time, dedi-
cation, and rethinking the current software engineer-
ing curricula.

Conclusion

Mathematical reasoning is intrinsic to both tradi-
tional engineeringand software engineering, though
each discipline uses different foundational mathe-
matics. Traditional engineers use continuous mathe-
matics primarily in a calculational mode for
modeling, design, and analysis, including to calcu-
late, say, load on a bridge component, compute the
wattage of a resistor, or determine the optimum
weight of an automobile suspension system. Soft-
ware engineers usually use discrete mathematics and
logic in a declarative mode for specifying and verify-
ing system behaviors and for analyzing system fea-
tures.

The RC circuit and iteration invariants described
earlier illustrate basic mathematical reasoning. How-
ever, engineering is significantly deeper and broader
than these examples indicate. Engineers are systems
architects who understand and apply the founda-

tional principles of the discipline. Software engineers’

must therefore learn to use mathemarics to: construct,
analyze, and check models of software systems; com-
pose systems from components; develop correct, effi-
cient system components; specify (precisely) the
behavior of systems and components; and analyze,
test, and evaluate systems and components. They
must therefore understand the theoretical and practi-
cal principles of programming and be able to learn

50 September 2003/Vol. 46, No.9 COMMUNICATIONS OF THE ACM

and use new languages and tools.

One area where traditional engineering has an
advantage is the number, variety, and maturity of
tools for mathematical modeling, design, analysis,
and implementation, including standard languages
for communication in blueprints and schematic cir-
cuit diagrams and computer-aided prototyping,
design, and analysis tools. Comparable software engi-
neering tools are emerging as the discipline matures.

Evidence supporting the importance of mathemat-
ics in software engineering practice is sparse. This nat-
urally leads to claims that software practitioners don’t
need to learn or use mathematics (4]. Surveys of cur-
rent practices [8] reflect reality; many software engi-
neers have not been taught to use discrete
mathematics and logic as effective tools. Education is
the key to ensuring future software engineers are able
to use mathematics and logic as power{ful} tools for
reasoning and thinking.

REFERENCES

1. Bentley, J. Programming pearls: Writing correct programs. Commun.
ACM 26, 12 (Dec. 1983), 1040-1045.

2. Clark, E., Grumberg, O., and Peled, D. Model Checking. MIT Press,
Cambridge, MA, 1999.

3. Devlin, K. The real reason why software engineers need math. Com-
mun. ACM 44, 10 (Oct. 2001), 21-22.

4. Glass, R. A new answer to ‘How important is mathematics to the soft-
ware practitioner?’ JEEE Software 17, 6 (Nov./Dec. 2000), 135136,
5. Henderson, I. et al. Striving for mathematical thinking, S/GCSE Bul-

letin (Inroads) 33, 4 (Dec. 2001), 114-124,

6. Hinchey, M. and Bowen,)., Eds. Applications of Formal Methods. Pren-
tice-Hall, London, U.K,, 1995.

7. LeBlanc, R. and Sobel, A., Eds. Computing Curricula 2001: Software
Engineering Volume (lst Draft), June 25, 2003; sce
sites.computer.org/ccse/volume/FirstDraft. pdf.

8. Lethbridge, T. What knowledge is important to a software profes-
sional? JEEE Comput. 33, 5 (May 2000), 44-50.

9. Parnas, D. Software engineering programmes are not computer science
programmes. Annals Software Engin. 6, 1-4 (1998), 19-37.

10. Roberts, E., Ed. Computing Curricula 2001: Computer Science Final
Report. IEEE Computer Society, New York, April 2002.

PETER B. HENDERSON (phenders@butler.edu) is a professor in
and head of the Department of Computer Science and Software
Engineering at Butler University, Indianapolis, IN.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and thar copies bear chis notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2003 ACM 0002-0782/03/0900 $5.00

ant is true prior to entering the iteration when loca-
tion = 1, that is, it is vacuously true.* Indeed, this is
often the case for iterations, anothet reason students
must understand the logical concept of vacuous. (You
may complete the algorithm using the red stuff to
derive the body of the iteration.)

One may argue that the red stuff is useless clutter.

2001: Computer Science [10], a guideline for under-
graduate computer science programs required dis-
crete mathematics in its core, recommending it be
taken early in the undergraduate curriculum. Mean-
while the ACM/IEEE Computing Curricula 2001:
Software Engineering (7] for undergraduate software
engineering programs adopted and extended this
foundational model. Included in
its two-course mathematical foun-

{ there exists location ‘loc’suchthat [717] .. [7]1=171...17]}

dations core (E = essential, D =

location —— |
el 1.,

while desired item = item in location of the list

loc
do

desirable, and O = optional) are
the following topics:

SEAEAN I

... [2and 22T+ 27,727}

Functions, Relarions, and Sets

(E);

<body of the iteration>

{ EL=EL T T2

Basic Logic (prepositional and
predicate) (E);

Proof Techniques (direct, contra-
diction, inductive) (E);

{ [FEl=l T+T7TIT...T?land 227707

HEHIE

Basic Counting (E);

Graphs and Trees (E);

{LEl=] ... 01 [2]...]2}

Discrete Probability (E);

4

location

Finite State Machines, regular
expressions (E);

Figure 3. Linear

Perhaps, but it captures the nat
search algorithm. pss p ural

reasoning our minds use. It is
explicit here. This is the type of reasoning—from first
principles—software engineering students should be
able to perform. However, this does not mean they
must use it all the time but be ready to apply it as
needed, when, for example, a derived software system
must be correct or when understanding, debugging,
‘or documenting software systems.

What is an iteration invariant for binary search?
Understood intuitively, it is that the location of the
desired item is constrained between two other loca-
tions—low and high—and the algorithm adjusts to
converge on the potential location of the desired item;
the desired item may not even be on the list. This
“intuitive” invariant is useful to software engineers for
deriving a correct algorithm. What percentage of the
programmers described in [1] would have solved the
problem correctly if they had reasoned more mathe-

matically?

Which Mathematics for

Software Engineers? , _
Educational foundations are being identified as
computer science and software engineering mature.
For example, the ACM/IEEE Computing Curricula

.
“There is nathing to muke it false, so it must be true “vacuously.

Grammars (E);
Algorithm Analysis (E);

Number Theory (D); and
Algebraic Structures (O).

Foundational core material included:

Abstraction:

- Generalization;

- Levels of abstraction and viewpoints;

- Data types, class abstractions, generics/templates;
and '

- Composition;

Modeling:

- Principles of modeling;

- Pre and post conditions, invariants;

- Mathematical models and specification languages;

- Model development tools and model
checking/validation;

- Modeling/design languages (such as UML, OOD,
and funcrional);

- Syntax vs. semantics (including understanding
model representations); and

- Explicitness (make no assumptions or state all
assumptions)

Though not explicitly in the core, a year of calculus
was also required-to: enhance mathematical maturity
and thinking; provide a contrast with discrete math-
ematics concepts; and ensure sufficient background

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9 49

“exclusive or”? When they say, “for all ...,” do they
mean universal quantification? What is the intended
meaning of “for all ...” when there are no elements
over which to quantify?

Mathematics in Software Engineering

The article “Why Math?” by Bruce et al. in this sec-
tion describes several example applications of math-
ematics in computer science. The following simple
linear search problem illustrates the use of logical

IN THE MOST

GENERAL INTERPRETATION,
EVERY PROBLEM-SOLVING
ACTIVITY IS AN
APPLICATION OF
MATHEMATICAL
REASONING.

48 September 2003/Vol. 46,No. 9 COMMUNICATIONS OF THE ACM

reasoning to derive an algorithm. The problem
statement is: Find the location of the first instance
of a specified item in a list of items; the specified
item is known to be in the list. Develop an algorithm
for this problem. Think about the following ques-
tions (hopefully the ones students would be asking
themselves): How many items are in the list?; Can the
list be empty?; What happens if the specified item
appears more than once?; and What is meant by “first
instance” and by “location” Addressing these ques-
tions and using the given problem information
enables software engineers to formulate representative
pre and post conditions required to ensure the prob-
lem is well defined.

~ Most undergraduate students would love to see
such a problem on a comprehensive exit exam.'
Applying a familiar pattern, or template, leads to a
few lines of code (simple). When developing com-
puter programs, do students simply pattern-match to
get an approximate program, then use extensive test-
ing to refine it? Or do they really understand the
underlying logic?

To understand the relevance of this issue, consider
a variant of the problem as it was presented to profes-
sional programmers in a tutorial session [1]. They had
to compose a program for binary search, a search
strategy that iteratively divides the list in half. Approx-
imately 90% of them got it wrong, unable to identify
proper pre and post conditions, apply a familiar pat-
tern, compose a correct algorithm, or express it in a
programming language.

Returning to the linear search problem, consider a
solution strategy based on the foundational concepts
of logic and iteration invariants. First, the algorithm
developer identifies the pre and post conditions to
clearly specify the problem. They can be presented
formally using predicate logic; for this discussion, I
offer a picture of the post condition (see Figure 2a).
That is, the desired item is not found (#) in the list
before 1ocation and the desired item is found (=)
at location of the list. As the algorithm iterates,
the not found (#), knowledge accumulates by
advancing the value of Location from 1, 2,3, ..
the iteration terminates once the item is found (=).
These factors lead to a potential iteration invariant
(see Figure 2b) and a potential iteration termination
condition, that is, iterate as long as the desired item
item in location of the list.

Figure 3 outlines a partially complete linear search
algorithm with logical assertions and iteration invari-
ants; the color blue denotes the item referenced by the
variable Location. Note that the iteration invari-

1 T
Few colleges and universities give such exams.

current state of the computation) called the itera-
tion/loop invariant, that caprures the underlying
meaning of the iteration (such as sum the values in a
list, search a tree structure, and compute the tax due
by all taxpayers). Mathematical logic can be used to
argue that the predicate I(S) satisfies logical con-
straings, as in Figure 1 for the while-do iteration;
here, the red stuff in brackets represents logical asser-
tions, and C(S) is a side-effect free Boolean condition.

Modeling software systems. A model, even a mental
one, must be created before construction of any arti-
fact can begin. Most software development is like cre-
ating art whercby an initial vision slowly takes form.
Planned evolution, along with maintenance issues, is
often ignored. This process may be acceptable for
some software projects, but with many such projects
the more the software engineer can learn and under-
stand early, the better. Modelmg is one vehicle for
achieving this under-

Upon termination, another
mathematical issue, { 1(S)
and not C(S) are true },
must logically imply (=>) the
desired post-condition. The
use of this approach for lin-
ear search is discussed later.
Software engineering stu-
dents can learn to use math-
ematical reasoning to

{pre-condition}
Initialization code
{(I(S) is true)

while C(S) is true do

{I(S) is true}

{I(S) and C(S) are true}
<code for body of iteration>

(I(S) and not C(S) are true.—> post-condition}

standing, and mathe-
matics is an important
tool for building, check-
ing, analyzing, and
experimenting with
models [2]. Moreover,
developing precise mod-
els using specification
languages, including (in

model, derive, understand,
debug, and document software systems. With enough

order of popularity) Z,

Figure 1. Logic of a while-do Larch, and Alloy, is

practice, the underlying mathematical concepts ~ fteration- important for identify-
become intrinsic to their ing specification errors,
thought processes, support- v : , T | which are very costly to
ing rather than hindering | @) [Z1ZF1#] T F] ;I B ?] IISt of i ltems-‘ correct once a software
their thinking. R 'I 2'- 3 1ocatlon | system is implemented
) ®) : e | (6]
Mathematics and L¢ [+ I Z | - I * I T I T I l ? Hlst of ltemS” Application domains.
Software Engineering - xy : | Software practitioners
- . I 23 .. .,,locatlon _ .
Key reasons for wanting to : : SRR can use mathematics to

learn and use mathematical
reasoning include:

Abstract software. Constructing non-real (abstract)
artifacts requires abstract reasoning. Which human
endeavor was developed to deal with abstraction?
Mathematics. Hence one view of a software system is
as a mathematically precise model of some desired
process or computation. Mathematics is one tool for
reasoning about software systems, as well as for prac-
titioners’ rigorous reasoning and analysis.

Notations, symbols, abstractions, precision. The
expressiony = ax + b is familiar from algebra,
and count == 0 is familiar from programming.

Each uses notations and symbols and is precise, given
the types of data and semantics of the operations,
specified mathematically. Learning a formal notation
is no more difficult than learning a programming lan-
guage. Indeed, it is often easier, as the syntax and
semantics are cleaner. Programming appeals to our

innately process/imperative-oriented minds, and pro-

gramming tools breathe life into programs. Mathe-
matics tends to be declarative and static, though such
tools as Axiom, Mathematica, and Maple help miti-
gate this perception. ’

communicate with their
colleagues, including
engineers, scientists,
mathematicians, statisti-
cians, actuaries, and econ-
omists. Mathematics is a rich, comprehensive, universal
language for communication between such diverse
groups.

Mathematical reasoning. One definition of mathe-
matical reasoning, artributed to an informal working
group of computer science and math educators
(www.math-in-cs.org) [5] is: “Applying mathematical
techniques, concepts, and processes, either explicitly
or implicitly, in the solution of problems; in other
words, mathematical modes of thought that help us
solve problems in any domain.” In the most general
interpretation, every problem-solving activity is an
application of mathematical reasoning. For example,
consider the benefits of exercises requiring students to
translate English statements into prepositional or
predicate logic form; these “modeling” exercises help
them be more precise and inquisitive about the inter-
pretation of English statements. When clients or col-
leagues say, “A or B,” do they mean “inclusive or” or

Figure 2. (a) Post condition
and (b) potential iteration
invariant.

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9 47

should learn to use foundational discrete mathemat-
ics concepts and logical reasoning at all times.

Ask traditional engineers if calculus should be
eliminated from undergraduate engineering curricula;
the answer would be no. In contrast,. practicing soft-
ware engineers have argued that mathematics is not
that important in software engineering education
since practitioners don't use it explicitly [4]. Was it
continuous or discrete mathematics (or both) that
software engineers considered less important? The
answer was unclear. The role of discrete mathematics
and logic in software engineering today ‘is not well
understood by either academic researchers or indus-

AWHICH HUMAN

ENDEAVOR WAS
DEVELOPED TO DEAL
WITH ABSTRACTION?

M ATHEMATICS.

46 September 2003/Vol. 46, No.9 COMMUNICATIONS OF THE ACM

trial practitioners. This lack of understanding will
change as the discipline matures and academics and
practitioners work together to develop that role, mak-
ing it similar to the role of continuous mathematics in
traditional engineering disciplines.

Physical vs. Software Engineering
Recent articles by software engineering educators
have described the similarities and differences
between traditional engineering disciplines and soft-
ware engineering; for example, see [9]. One major
difference is that traditional engineers construct real,
physical artifacts, while software engineers construct
non-real, abstract artifacts. The foundations of tra-
ditional engineering disciplines are mature physical
sciences and continuous mathematics, whereas those
of software engineering are less mature abstract com-
puter science and discrete mathematics. In physical
engineering, two main concerns for designing any
product are cost of production and reliability mea-
sured by time to failure. In software engineering,
two main concerns are cost of development and reli-
ability measured by number of errors per thousand
lines of source code. Both traditional and software
engineering disciplines require maintenance but in
different ways.

All engineering disciplines involve developing and

-analyzing models of the desired artifact. However, the

methods, tools, and degree of precision differ between
traditional and software engineering. Abstract model-
ing and analysis are mathematical in nature. They are
very mature in traditional engineering and maturing
slowly in software engineering. An example discussed
in the following paragraphs demonstrates how math-
ematical ‘reasoning is used in both traditional and
software engineering. _

In electrical engineering, the voltage decay as a
function of time t of a resistor-capacitor (RC) circuit
is specified by the function V(t) = Vo e(-¥R<), where
R is the resistance, C the capacitance, and Vo the ini-
tial capacitor voltage. This model of the behavior of
RC circuits is derived from principles of mathemati-
cal circuit design using foundational calculus and dif-
ferential equations. Electrical engineering students
learn this derivation in their electronic circuits course
after studying calculus and differential equations.
Here, mathematics-based reasoning is used to derive
and understand a fundamental concept.

Iteration invariants represent a foundational con-
cept few computer science or software engineering
graduates understand, appreciate, or use effectively,
even though they are important for deriving, under-
standing, debugging, and documenting algorithms.
Every iteration has a predicate I(S) (S represents the

BY
PETER B. HENDERSON

Discrete mathematics,
especially logic, plays
an implicit role in
Software engineering
similar to the role

of continuons
mathematics in
traditional physically
based engineering

disciplines.

MATHEMATICAL

REASONING

SOFTWARE ENGINEERING

EDUCATION

THE ENGINEERING PROFESSION IS A
BRIDGE BETWEEN SCIENCE AND
MATHEMATICS AND THE TECHNOLOG-
ICAL NEEDS OF ALL PEOPLE. ALL
ENGINEERING DISCIPLINES ARE FUN-
DAMENTALLY BASED ON MATHEMAT-
PROBLEM SOLVING. TRADITIONAL
INCLUDING CHEMICAL,

ICS

AND
ENGINEERING DISCIPLINES,
CIVIL, ELECTRICAL AND MECHANICAL, RELY ON CON-

TINUOUS RATHER THAN DISCRETE MATHEMATICAL
FOUNDATIONS. SOFTWARE ENGINEERING IS AN EMERG-
ING DISCIPLINE THAT APPLIES MATHEMATICAL AND
COMPUTER SCIENCE PRINCIPLES TO THE DEVELOPMENT
AND MAINTENANCE OF SOFTWARE SYSTEMS, RELYING
PRIMARILY ON THE PRINCIPLES OF DISCRETE MATHE-
MATICS, ESPECIALLY LOGIC.

What role does mathematics engineering and mathematics [3].

play in software engineering?
Consider the following two state-
ments: Software practitioners do
not use mathematics; and Soft-
ware practitioners need to think
logically and precisely. They rep-
resent an ﬁpparent COntl‘HdiCtion
in light of the similaricy of the
reasoning underlying software

Perhaps software practitioners
who say, I don’t use mathematics,
really mean, I dont use mathe-
matics explicitly or formally.
Many practicing engineers don't
explicitly use calculus on a daily
basis but do implicitly use mathe-
matical reasoning all the time.
Similarly, software engineers

ILLUSTRATION BY JEAN-FRANGOIS PODEVIN

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9

45

specification? The answer is mathematical induction—
one of many reasons that proof by induction is such an
important topic in courses on discrete mathematics.
Programmers with a good understanding of mathe-
matical induction find it easier to write and, more
important, provide convincing arguments for the cor-
rectness of recursive algorithms.

We were careful to say “provide convincing argu-
ments™ rather than “prove” in the preceding paragraph.
While there are circumstances where a careful formal
proof of correctness is called for, most of the time it is
sufficient to provide an informal argument for the cor-
rectness of an algorithm:

If programmers are able to write the specifications of
the parts of an algorithm, it is generally relatively easy
for them to also provide an informal argument of cor-
rectness by asking, and answering: Does the base case
satisfy the specification? and Do complex cases eventu-
ally get down to a base case? If the programmer. pre-
sumes that all embedded recursive calls do the right
thing, does this case satisfy the specification? Moreover,
rather than just using such a process to verify an exist-

ing program, the process can also be used to develop .

and verify a program at the same time.

Secure and safety-critical systems. Recent virus and
other security attacks highlight the importance of and
often critical need for secure and safety-critical systems.
While most computer scientists do not write secure or
safety-critical systems, they must still understand the
existing and potential threats to their systems. Interest-
ing work has been done on ways to verify that down-
loaded software from untrusted sources will not behave
in ways that pur a system at risk. Downloaded applets
in Java (at least with the proper security policy included
in the browser) are guaranteed to run in a “sandbox,”
which excludes reading from or writing to the local file
system. '

Other interesting research has focused on “proof-
carrying code” [4]; programmers provide a machine-
assisted proof that the program satisfies a given security
policy (such as it won write to memory outside a fixed
set of locations or won't write to files). This proof is
typically much easier to develop than a proof of cor-
rectness of the program. The proof may be down-
loaded with the code and checked (automatically)

inst the downloaded code to ensure it is correct and
the downloaded code is secure.

While developing and sending a proof might be
deemed too expensive for code intended to.run only
one time (for which restricting execution to a sandbox
may be sufficient), it can provide great assurance
against accidentally downloading viruses or other dam-
aging code as part of major programs that will be used
repeatedly on a system. Other techniques are also being

44 September 2003/Vol. 46, No. 9 COMMUNICATIONS OF THE ACM

developed, including compiling to assembly language
with proof annotations, using mathematical proof
techniques for the same purpose.

Conclusion
These arguments and examples give a sense of why
mathematics and mathematical thinking are important
in computer science. We could have cited many more,
including the remarkable success of relational databases
and model checkers for verifying hardware. The exam-
ples we selected are interesting in their own right and
different enough from the ones usually cited to suggest
that the tools and reasoning taught in mathematics
courses, especially those covering discrete mathematics,
are of great value later in practice.

A computer science education is not intended to

‘teach what students need to know for their first job.

Nor is it to teach what they will need to know for all
the jobs they will ever have. On-the-job learning, read-
ing, and short- and semester-long courses (whether
online or in person) provide much of what is needed
over the course of one’s career.

One of the most important goals for a university
education is to provide the foundations for further
learning. We have heard it described this way: A tradi-
tional university education provides just-in-case learn-
ing rather than the just-in-time learning provided by
on-the-job training. We know that mathematical
thinking will be of use; we just can't always predicr
exactly when or what form it will take.

REFERENCES

1.'Bosak, J. and Bray, T. XML and the second-generation Web. Sci. Am. (May
1999).

2. Bruce, K., Kelemen, C., and Tucker, A. Our curriculum has become math-
phobic! SIGCSE Bulletin 33 (2001), 243-247.

3. Cormen, T., Leiserson, C.,, Rivest, R., and Stein, C. Introduction to Algo-
rithms, 2nd Ed. MIT Press/McGraw-Hill, New York, 2001.

4, Necula, G. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (1997),
106-119.

5. The Joint Task Force on Computing Curricula. Computing Curricula
2001. J. Educat. Res. Comput. 1, 3 (2001).

Kim B. BRUCE (kim@cs.williams.edu) is the Frederick Latimer Wells
Professor of Computer Science in the Department of Computer Science
at Williams College, Williamstown, MA

ROBERT L. ScOT DRYSDALE (scor@cs.dartmouth.edu) is a
professor in and chair of the Department of Computer Science at
Dartmouth College, Hanover, NH.

CHARLES KELEMEN (cfk@cs.swarthmore.edu) is the Edward Hicks
Magill Professor of Computer Science and chair of the Computer
Science Department at Swarthmore College, Swarthmore, PA.

ALLEN TUCKER (allen@bowdoin.edu) is the Anne T. and Robert M.
Bass Professor and chair of the Department of Computer Science at
Bowdoin College, Brunswick, ME.

Bruce's research was supported in part by National Science Foundution grant CCR-
9988210).

© 2003 ACM (0002-0782/03/09(X} $5.00

this greedy algorithm would not solve the variable-rate
version, but a particular O(z log 1) dynamic program-
ming algorithm would solve it.

- The third problem—handling sets of requests—is
NP-hard. For practical purposes, this means the con-
sultant wouldn' have found a substantially better solu-
tion than trying all the 2~ possible subsets of requests
and so should have tried to find a good but not optimal
solution rather than promise to find the best solution.

How would the consultant have known that a sim-
ple greedy algorithm solves the first problem (but not
the second) and that a dynamic programming algo-
rithm solves the second problem? The consultant
would have had to prove it. How would the consultant
know that the third problem is NP-hard? The consul-
rant would have had to prove it by reducing a known
NP-hard problem—Set Packing—to this problem.
There would have been no way to do a professional job
on this consulting assignment without doing these
proofs. (See [3] for more on algorithms.)

We could offer many more examples where similar
problems must be solved or where some are easy and
others intractable. Mathematical proofs are the only
way to distinguish among the alternatives.

Formal Specifications in the Real World
The term “formal methods” in hardware and software
design means that precise mathematical specifications
are used to define a product and that the product’s
implementation (code) is verified using mathematical
proof techniques. The extent to which formal methods
are used to design a particular product depends on
many factors, including the cost of development, effi-
ciency of the resulting code, skills of the developers, and
safety-critical nature of the application.

There has been a great deal of practitioner interest of
late in formal specification and verification of hardware,
as well as of software. The potential cost of a mistake in
the design of, say, a chip can be enormous, thus it can
be financially beneficial to commit the resources to ver-
ifying a hardware design. Also, when designing a pro-
tocol that could be widely used, it is crucial to verify it
has the required performance and security properties.

Most software engineers tend to think of these for-
mal proofs of correctness when they hear the words for-
mal methods, but we consider formal methods more
broadly to encompass a variety of situations where there
are benefits to using a specification and mathematical
tools by computer scientists.

XML, recursion, and mathematical induction. The
syntax of a programming language is formally specified
via context-free grammar or syntax diagrams. This
specification makes it clear to both compiler writers
and programmers what is legal syntax.

A promising development with the same flavor as
the formal specification of programming language syn-
tax is the introduction of XML as a structured way to
transmit information between programs and systems
[1]. Data is presented using tags similar to those in
HTML, but the tags indicate the semantic structure of
the data, rather than its layout in a browser. Data type
definitions (DTDs) provide a formal specification of
the constraints on the structure of data similar to the
way a static type system indicates constraints on legal
programs in a particular programming language.

XML data can be parsed like programming lan-
guages, resulting in structures like parse trees. The data
itself can be verified against DTDs using techniques
similar to the ones used in type checkers on program-
ming languages. However, rather than being restricted
to the inflexible structure of a fixed programming lan-
guage, groups sharing data with similar meanings can
agree on different sets of tags and DTDs for represent-
ing different kinds of data.

If sender and receiver agree on the DTD for dara,
the sender can generate XML-formatted data, while the
receiver can parse, verify, and transform it into a format
easier for the receiver to use. All this processing can use
technology originally developed for compiling pro-
gramming languages. The technology has been one of
the great triumphs of theoretical computer science, pro-
viding provable algorithmic connections between the
formal description of languages and programs for pro-
cessing the languages.

However, even if programmers ignore this technol-
ogy and simply process the data directly using the
equivalent of recursive descent compilers, the mathe-
matical understanding of XML as formally specified
data provides tools for working with XML. The DTD
provides a specification of the structure of data similar
to that of a regular expression. Simple algorithms based
on finite automata derived directly from such specifica-
tions can verify that incoming data satisfy the specifica-
tions, while other data-directed algorithms parse and
transform the data into other formats.

XML documents can be understoed in their parsed
form as trees. Recursive algorithms for working with
trees are significantly easier to understand than equiva-
lent iterative algorithms using a stack. (Most program-
mers find it a real challenge 1o write an iterative
algorithm to do an in-order traversal of a tree.) While
many programmers have tried to avoid recursive algo-
rithms—some because they didn’t understand them,
others because they felt they were too inefficient—pro-
cessing recursively specified or tree-structured data is
much easier with recursion.

How might programmers best understand recursion
and ensure their recursive programs satisfy the given

43

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. 9

students improve their ability to abstract away from
derails and be more creative in their approaches to prob-
lems through exposure to challenging math and math-
ematically oriented computer science courses.

Discrete mathematics includes the following six top-
ics, or discrete structures, the core in the ACM/IEEE
computer science report Computing Curricula 2001:
Computer Science [5): Functions, relations, and sets;
Basic logic; Proof techniques (including mathematical
induction and proof by contradiction); Basics of count-
ing; Graphs and trees; and Discrete probability.

We begin our exploration of the need for discrete
mathematics in computer science with a simple prob-
lem whose solution involves its use. Vectors are sup-
ported in standard libraries of C++ and Java. From the
programmer’s point of view a vector looks like an
extensible array. That is, while a vector is created with
a given initial size, if something is added at an index
beyond its extent, the vector automatically grows to be
large enough to hold a value at that index.

A vector can be implemented in many ways (such as
a linked list), but the most common implementation
uses an array to hold the values. In such an implemen-
tation, if an element is inserted beyond its extent, the
data structure creates a new array large enough to
include the index, copies the elements from the old
array to the new array, then adds the new element at
the proper index. This vector implementation is
straightforward, but how much should the array be
extended each time it runs out of space?

Keeping things simple, suppose the array is being
filled in increasing order, so each time it runs out of
space, it needs to be extended by only one cell. There are
two strategies for increasing the size of the array: always
increase its size by the same fixed amount, F, and always
increase its size by a fixed percentage, P%. A simple
analysis using discrete mathematics (really just arith-
metic and geometric series) shows that in a situation in
which there are many additions, the first strategy results
in a situarion where the average cost of each addition is
O(n), where 7 is the number of additions (that is, the
total of » additions costs some constant multiplied by
n%; the average cost for each addition with the second
strategy results in a constant (that is, the total of 7 addi-
tions costs a constant multiplied by 7).'

This simple but important example analyzes two
different implementations of a common data structure.
But we wouldn’t know how to compare their quite sig-
nificant differences in cost without being able to per-
form a mathematical analysis of the algorithms
involved in the implementations.

Here, we aim to sketch out some other places where
mathematics or the kind of thinking fostered by the
study of mathematics is valuable in computing. Some

42 September 2003/Vol. 46, No.9 COMMUNICATIONS OF THE ACM

of the applications involve computations, but more of
them rely on the notion of formal specification and
mathematical reasoning.

Determining Efficient Algorithms
Mathematics is central to designing and analyzing algo-
rithms. We could discuss how to solve recurrence rela-
tionships, average-case analyses, and many other things
everyone would agree are highly mathematical. Bur the
argument could be made that only a handful of spe-
cialists need to do such things; everybody else can just
look up the algorithms others have developed.

Still, evaluating and selecting algorithms is not sim-
ple. Consider a simple consulting job: Suppose the
independent cab and limo operators in Salt Lake City
had decided to contract with a consultant to write a
program to help each of them schedule all the cus-
tomers who wanted to ride with them during the 2002
Winter Olympics. Their first request might have been
for the consultant to write a program into which cus-
tomers could enter requests of the form: “I want a cab
and driver from such and such a start date and time to
such and such a finish date and time.” As drivers are
paid a flat rate per ride, the program would provide a
driver the largest possible subset of requests that did not
overlap in time.

Later, the drivers might have realized that instead of
charging a fixed rate they could have customers bid for
how much they were willing to pay for the requested
period; the opening ceremonies and figure skating
were, for example, more popular than the biathlon.
The second version of the program scheduled the set of
non-overlapping requests to maximize the amount of
money the driver using the program would earn.

However, some customers might have wanted the
same driver the whole time they were at the games. To
accommodate them, a third version of the program could
have been developed to take a set of time-period requests,
along with a single bid for the whole set. A driver would
have had to agree to drive for all requested intervals or
refuse the request. The program would pick the sets of
requests that maximized the amount of money the driver
would receive without overlapping in time.

At first glance, it seems like the main difference
berween the three program versions would have been
in the user interface. But that was not the case. The ver-
sion with the flac-rate pricing can be solved by a simple
greedy algorithm in O(n log #) time: sort the requests
by finish time and ar each step schedule the first request
that does not overlap the last job scheduled. However,

"The constancs depend on the values of F and P. A very simple analysis is pussible
when che algorithm stares with an empty array and F = 1 Guld one new element
when che array runs out of space) and P = 100%. (double the size of the array when it
tuns out of spirce).

BY

KM B. BRUCE,
ROBERT L. Scot
DRYSDALE,
CHARLES KELEMEN,
AND

ALLEN TUCKER

The mathematical
thinking, as well as
the mathematics,

in a computer science
education prepeares
students for all stages
of system development,
from design to the
correctness of the final

implementation.

MATH REQUIREMENTS! THESE WORDS

ARE ENOUGH TO SEND CHILLS DOWN
THE SPINES OF A GOOD SHARE OF NEW
COMPUTER
YEAR. EVIDENCE THAT EVEN SOME
PRACTITIONERS

SCIENCE MAJORS EVERY

AND EDUCATORS

QUESTION THE VALUE OF MATHEMATICS FOR COMPUTER
SCIENCE IS DISCUSSED IN [2]. THEY MIGHT CLAIM MATH-
EMATICS IS USED SIMPLY AS A FILTER — WEEDING OUT STU-
DENTS TOO WEAK OR UNPREPARED TO SURVIVE —OR JUST
TO PARE DOWN THE HORDES OF POTENTIAL COMPUTER
SCIENCE MAJORS TO A MORE MANAGEABLE SIZE. OTHERS

might argue it is just another sign
that faculty in their ivory towers
have no clue what practitioners
really do or need. Each of these
views surely has its adherents, but
we argue here that learning the
right kind of mathematics is essen-
tial to the understanding and prac-
tice of computer science.

What is the right kind of math-
ematics for preparing students for
real-world responsibilities? In
computer science, discrete mathe-
matics is the core need. For appli-
cations of compurer science, the
appropriate mathematics is what-
ever is needed to model the appli-
cation discipline. Software (and

hardware) solutions to most prob-
lems, including those in banking,
e-commerce, and airline reserva-
tions, involve constructing a
(mathemartical) model of the real
(physical) domain and imple-
menting it. Mathemarics can be
helpful in all stages of develop-
ment, including design, specifica-
tion, coding, and verifying the
security and correctness of the
final implementation. In many
cases, specific topics in mathemat-
ics are not as important as having
a high level of mathemarical
sophistication. Just as athletes
might cross-train by running and
lifting weights, computer science

[LLUSTRATION BY JEAN-FRANCOIS PODEVIN

COMMUNICATIONS OF THE ACM September 2003/Vol. 46, No. ¢

41

WOV 3HL 40 SNOLLYIINNKWKOD 6 ON ‘9t I0A/€007 J3quwaidag ot

master abstract entities—entities that are purely
abstract—and cause the brain the maximum difficulty
to handle. Where do you find this excellent mental
training ground? In mathematics.

Software engineers may well never apply any of the
specific theorems or techniques they were forced to
learn as students (though some surely will, given the
way mathematics connects into most walks of life in
one way or another). But that doesn’t mean those math
courses were not important. On the contrary. The
main benefit of learning and doing mathematics is not
the specific conten; rather it’s the fact that it develops
the ability to reason precisely and analyrically about
formally defined abstract structures.

In this special section, six professors of computer
science give their own particular slants on the reasons
mathematics is an important component of a com-
puter science education. Together, their articles make a
strong case. Yes, we all know of individuals with no
mathematics education beyond high school who have
developed highly successful computer programs. That
success does not imply mathematics is not important
for computer science or to one’s ability to write innov-
ative or bug-free code. A more plausible inference is
that with a more substantial mathematical back-
ground, these successful individuals might have been
even more successful.

Kim Bruce et al. argue that knowledge of, and pro-
ficiency in, discrete mathematics, in particular, is
essential for practicing computer professionals. Not so
much because they are likely to have to apply any par-
ticular theorem or method—though the authors do
provide some specific examples. Rather, because, they
say, “One of the most important goals for a college or
university education is to provide the foundations for
further learning.” Specific techniques, either in math-
ematics or in any other discipline, they say, can always
be learned—and are arguably best taught—through
on-the-job training as needed. University education,
on the other hand, should aim to provide a sound base
preparing the way for subsequent acquisition of spe-
cific skills. Or, as the authors themselves put it, “Tra-
ditional university education provides just-in-case
learning rather than the just-in-time learning provided
by on-the-job training.” They conclude by saying,
“We know that mathematical thinking will be of use;
we just don’t know exactly when or what form it will
take.” '

Peter Henderson sets his sights on software engi-
neering, which he defines as “an emerging discipline
that applies mathematical and computer science prin-
ciples to the development and maintenance of sofctware
systems.” To Henderson, writing software is analogous
to the more established physical engineering disci-

plines, including chemical, civil, electrical, and
mechanical. This makes the importance of mathemar-
ics—or at least mathematical thinking—self-evident.
As he observes, “All engineering disciplines require
developing and analyzing models of the desired arri-
fact... Abstract modeling and analysis is mathemati-
cal.” As for Bruce and his co-authors, Henderson still
must answer: “What math?” Like them, Henderson
plumps for discrete mathematics, especially logic.

Admittedly, the importance of discrete mathemarics
already makes software engineering quite unlike the
other engineering disciplines, with their heavy depen-
dency on calculus-based, continuous mathematics.
But is software development an engineering discipline?
This question leads Henderson to start off by refor-
mulating the original question. The bulk of his article
is devoted to establishing an affirmative answer—or at
least making the case that the answer should be affir-
mative. He has played an active role in the develop-
ment and subsequent updating of the ACM/IEEE
Computing Curricula 2001 and, not surprisingly, draws
on that background in making his case.

Finally, Vicki Almstrum shines a very different light
on the issue. Drawing on a survey she administered to
500 computer professionals, she tries to tease out what
motivates individuals to study computer science in the
first place. Is it the gadgetry of computing and a desire
to make things—put crudely, to write code that does
stuff—or is it more an intellectual activity, akin to
mathematics, even a branch of mathematics? For how
many of us is the driving motivation to see our code
work? For how many is the goal a desire to understand
what’s going on? Do these differences lead to distinc-
tions between those who view mathematics as not
important to computer science and those who do?

While almost 80% of Almstrum’s survey participants
were women, research by others has shown there is a
gender difference in what attracts people to enter or
remain in the computer field, with men tending to be
attracted more by “building and doing” and women
more by “understanding,” Nevertheless, Almstrum’s sur-
vey serves to raise awareness of the breadth and com-
plexity of why individuals become computer
professionals. Perhaps of greatest relevance to the focus
of this special section, only 2% of those responding to
the survey felt that a good understanding of mathemat-
ics was not helpful in computer science. @

KEITH DEVLIN (devlin@csli.stanford.edu) is Executive Director of
the Center for the Study of Language and [nformation and a founding -
member of the Media X program, both at Stanford University, Stan-
ford, CA.

© 2003 ACM 1002-0782/03/0910 §5.0

COMMUNICATIONS OF THE ACM September 2003/Vol. 46. No. 9 39

A cute addition. But it struck me then, and does
still, that it spoke volumes about the way many com-
puter science students view the subject. To the graffici
writer, operating systems, computer programs, and
databases were (I assume) not abstract but real. Math-
ematical objects, in contrast, the graffiti-writer likely

believed—and I have ralked to many students who feel -

this way—are truly abstract, and reasoning about
them is an abstract intellectual pursuit. Which goes to
show just how good we humans are (perhaps also how
effective university professors are) at convincing our-
selves (and our students) that certain abstractions are
somehow real.

The truth is, of course, that computer science is

tively little extra effort to reason about any others.

But surely, you might say, even if 'm right, when it
comes to training computer scientists, it makes sense
to design educational courses around the abstractions
they will actually use after graduating and going to
work for IBM, Microsoft, or whoever. Maybe so (in
fact no, but I'll leave that argument to another time).
But who can say what the dominant programming
paradigms and languages will be four years into the
future? Computing is a rapidly shifting sand. Mathe-
matics, in contrast, has a long history and is stable and
well tested.

Sure, there is a good argument to be made for com-
puter science students studying discrete mathematics

ONCE WE HAVE LEARNED HOW TO REASON PRECISELY ABOUT
ONE SET OF ABSTRACTIONS, IT TAKES RELATIVELY LITTLE EXTRA
EFFORT TO REASON ABOUT ANY OTHERS.

entirely about abstractions. The familiar sleek metal
boxes don', in and of themselves, compute. As electri-
cal devices, if they can be said to do anything, it’s
physics. It is only by virtue of the way we design their
electrical circuits that, when the current flows, obeying
the laws of physics, we human observers pretend they
are performing reasoning (following the laws of logic),
numerical calculations (following the laws of arith-
metic), or searches for information. True, it’s a highly
effective pretense. But just because it’s useful does not
make it any less a pretense.

~ Once you realize that computing is all about con-
structing, manipulating, and reasoning about abstrac-
tions, it becomes clear that an important prerequisite
for writing (good) computer programs is the ability to
handle abstractions in a precise manner. As it happens,
that is something we humans have been doing suc-
cessfully for more than three thousand years. We call it
mathematics.

This suggests that learning and doing mathematics
could play an important role in educating future com-
puter professionals. But if so, then what mathematics?
From an educational point of view, in order to develop
the ability to reason about formal abstractions, it turns
out to be largely irrelevant exactly which abstractions
are used. Our minds, which evolved over many tens of
thousands of years to reason (largely imprecisely)
about the physical world, and more recently the social
one, find it extremely difficult accepting formal
abstractions. But once we have learned how to reason
precisely about one set of abstractions, it takes rela-

38 September 2003/Vol. 46, No. 9 COMMUNICATIONS OF THE ACM

rather than calculus. While agreeing with this view-
point, however, I personally find it is often overplayed.
Here’s why.

A common view of education is that its main aim is
the acquisition of knowledge through the learning of
facts. After all, for the most part that is how we mea-
sure the effectiveness of education, testing students’
knowledge. But it’s simply not right. It might be the
aim of certain courses, but it’s definitely not the pur-
pose of education. The goal of education is to improve
minds, enabling them to acquire abilities and skills to
do things they could not do previously. As William
Butler Yeats put it, “Education is not about filling a
bucket; it’s lighting a fire.” Books and CDs store many
more facts than people do—they are excellent buck-
ets—but that doesn’t make them smart. Being smart is
abour doing, not knowing.

A number of studies by education researchers have
shown that if you test university students just a few
months after they have completed a course, they will
have forgotten most of the facts they had learned, even
if they passed the final exam with flying colors. That
doesn’t mean the course wasn't a success. The human
brain adapts to intellectual challenges by forging and
strengthening neural pathways, and these pathways
remain long after the “facts” used to develop them have
faded away. The facts fade, but the abilities remain.

If you want to prepare people to design, build, and
reason about formal abstractions, including computer
software, the best approach is to look for the most
challenging mental exercises that force the brain to

BY
KEITH DEVLIN,

Guest Editor

._\ (Jw“ff\ \ i f N
J :

! U) =4

REQUIRE

COMPUTER SCIENCE STUDENTS

The main benefit

of learning and doing
mathematics is that

it develops the ability
to veason about
formally defined
abstract structures like
those in computer
science and its

applications.

SOME YEARS AGO, I GAVE A LECTURE TO THE COM-
PUTER SCIENCE DEPARTMENT AT THE UNIVERSITY
OF LEEDS IN ENGLAND. KNOWING MY BACKGROUND
IN MATHEMATICS —MATHEMATICAL LOGIC, IN PAR-
TICULAR —THE AUDIENCE EXPECTED IT WOULD BE
FAIRLY MATHEMATICAL, AND ON THAT OCCASION
THEY WERE CORRECT. AS I GLANCED AT THE
ANNOUNCEMENT OF MY TALK POSTED OUTSIDE THE
LECTURE ROOM, I NOTICED THAT SOMEONE HAD
ADDED SOME RATHER TELLING GRAFFITI. OVER THE
FAMILIAR HEADER “ABSTRACT’ ABOVE THE

DESCRIPTION OF MY TALK, THIS PERSON HAD
SCRAWLED THE WORD “VERY.”

ILLUSTRATION BY JEAN-FRANGOIS PODEVIN

> -

‘ P ;
COMMUNICATIONS OF THE ACM Septem{hc’f 2003/Vol,/46, No. 9

37

