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We consider an approximate maximum likelihood algorithm for estimating parameters of

possibly non�causal and non�invertible autoregressive moving average processes driven by

independent identically distributed non�Gaussian noise� The normalized approximate max�

imum likelihood estimate has a global maximum which is consistent and e�cient� The

estimates and their associated asymptotic covariance matrix are calculated with a subrou�

tine implemented in FORTRAN ���
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� INTRODUCTION

Time series data occur in a variety of disciplines including engineering� science� so�

ciology and economics among others� There are many techniques that have been

derived to infer the characteristics of such series� This is done by �rst hypothesizing

a mathematical model to represent the data� Having chosen a model it then becomes

possible to estimate parameters which will enhance our understanding of the mech�

anisms which generate this sequence� Once a satisfactory model has been developed

then it maybe used to help separate the noise from the signal and even predict future

values�

There is extensive literature on �nite parameter time series models such as Brock�

well and Davis �����	� Greene ����
	� and Hamilton �����	 to name a few� Among

these the autoregressive moving average �ARMA
 models are extensively studied

with wide applications� Existing literature on these models are mainly based upon
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the Gaussian� causal and invertible assumptions� In recent years there has been con�

siderable interest in the non�Gaussian� non�causal� and non�invertible ARMA mod�

els�Lii and Rosenblatt ����	 and �Rosenblatt ����	� Applications of these models have

been well documented �Nikias and Petropulu ���
	� Inferences on these models are

based on higher order moment or cumulant information� This paper presents a max�

imum likelihood �MLE
 based algorithm which gives e�cient consistent estimates of

the parameters of a non�Gaussian� possibly non�causal and non�invertible stationary

ARMA process� Examples are given to illustrate the usefulness of the algorithm�

� THEORY

We begin by considering ARMA sequences driven by independent identically dis�

tributed non�Gaussian noise �Lii and Rosenblatt ����	� The MLE so developed is a

function of the coe�cients of the ARMA model and the probability density function

of the driving noise process� The number of local maxima encountered are directly

related to the roots of the ARMA polynomials� The surface of the MLE is non�linear

in nature resulting in the need to implement methodical sequential search techniques

if the parameter space is small or stochastic techniques if the parameter space is large�

With this in mind� we de�ne a zero mean process fXt� t � � � � ���� �� �� � � �g which
is said to be an ARMA�p�q
 process if fXtg is stationary and satis�es

Xt � ��Xt�� � � � �� �pXt�p � Zt � ��Zt�� � � � �� �qZt�q ��


where Zt are independent and identically distributed random variables with mean

zero and variance ��� The parameters � and � are polynomial coe�cients represented

by

�p�B
Xt � �q�B
Zt ��


with

�p�B
 � � � ��B � ��B
� � � � �� �pB

p �



and

�q�B
 � � � ��B � ��B
� � � � �� �qB

q� ��


B is the backshift operator having the property

BkZt � Zt�k� ��


We assume that �p�z
 and �q�z
 �� � for all jzj � �� Causality and invertibility are

de�ned with respect to the roots of the polynomials� If all the roots of

�



�p�B
 �
pY

i��

��� �iB
 ��


are greater than � then the autoregressive polynomial is said to be causal� If all the

roots of

�q�B
 �
qY

i��

��� �iB
 ��


are greater than � then the moving average polynomial is said to be invertible�

The input process is assumed to have a probability density function f�z
 which

must be normalized by the standard deviation � as the scale factor �i�e� f��z
 �

���f�z���

� This noise process can be represented by a Laurent series expansion of

����z
��z
�

Zt � ��B
����B
Xt ��


�
�X

j���
�jXt�j� ��


To facilitate the computation of �j� the maximum likelihood function� and the co�

variance matrix it is convenient to factor the polynomials associated with the ARMA

process into

��B
 � ���B
���B
 ���


� �� � ��� B � � � �� ��r B
r
�� � ��r��B � � � �� ��p B

s
� ���


��B
 � ���B
���B
 ���


� �� � ��� B � � � �� ��r�B
r�
�� � ��r���B � � � �� ��q B

s�
� ��



where �� and �� have no roots on the closed unit disc and �� and �� have all roots

in the interior of the unit disc� The inverses are

����B
 � ����B

������B

�� ���


� �	�B

�
�B

 ���


� �
�X

j��

	jB
j
�

�X

j�s


jB
�j
� ���


����B
 � ����B

������B

�� ���


� �	��B

�
 ��B

 ���


� �
�X

j��

	�jB
j
�

�X
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�j
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Then the driving noise process Zt is

Zt � �	��B
���B



 ��B
Xt ���


� 	���B

 ��B
Xt ���


� �
�X

j��

	��jB
j
�

�X

j�s�

 �jB

�j
Xt� ���


For numerical purposes� the computation of the noise process is approximated by

�Zt �
p�L��X

j��

s��L��X

k�s�
	��j


�
kXt�j�k ��



where L�� � L�� represent the truncated length of the 	� and 
 � polynomials� The pro�

cedure for estimating an ARMA process without the Gaussian� causal� and invertible

assumptions has been developed by Lii and Rosenblatt �����	� The MLE is a function

of the input sequence and the parameter space which has the following form�

L��
 �
n�kX

t�k��

log�f�� �Zt



n� �k
� log�j��p j
� log�j��q j
 ���


where k represents a truncation at the boundaries of the data by a factor of O�n���


implemented by max����
p
n
 and the vector � represents the p � q � � unknown

parameters

� � ���� � � � � � �
�

r � �
�
r��� � � � � �

�
p � �

�

� � � � � � �
�

r� � �
�
r���� � � � � �

�
q � �


� ���


which are to be estimated� Parameterization of the estimates as de�ned in equation

��
 where �
�
� ���� � � � � �p� ��� � � � � �q� �


� uses equations ���
 and ���
� The covariance
matrix

P�� is obtained from equation ����
 and Table ��
 of Lii and Rosenblatt �����	�

The Jacobian R � ���
�

��	 is required to calculate the covariance matrix �R

P��R�

for the estimates of �

�
� We now give a few examples to illustrate the algorithm�

� EXAMPLES

��� ARMA�s with Recipricol Roots

Consider the case of an ARMA����
 where the roots of the AR and MA process are

reciprocals�

�



��� �B
Xt � ��� ���B
Zt ���


This model is unidenti�able using second order statistics such as the auto�covariance

function �ACF
 and the partial auto�covariance function �PACF
� None of the non�

zero lagged results are signi�cantly di�erent from zero� The power spectrum is thus

a constant across all frequencies which is the characteristic of white noise�

However� the procedure outlined above is quite capable of detecting this condition

should the underlying process have a non�Gaussian noise distribution� Simulating a

Student t with � degrees of freedom as the density of Zt and a sample size of ���

with � � ��� in ���
 produces the log�likelihood surface depicted in Figure �� �Refer

to equations �� and �� for the de�nition of the surface and the ARMA model�
 With

� roots there are � local maximum since the root and its reciprocal produce areas

maximizing the MLE� One of the root combinations gives the Global maximum� The

surface features have been truncated at the bottom in this Figure to accentuate the

areas where the maxima occur� Table � reveals that the parameters calculated using

Splus are essentially zero� This corresponds to a white noise process as anticipated�

The reason is that Splus assumes causality� invertibility� and a Gaussian distribution

for the noise process�

Table �� ARMA����
 Parameter Estimates given Distribution Assumptions� Note�

Results given as mean�std�

Simulated Student t��� Gaussian

Parameters Estimation Estimation

�� � ���� ����������
� ������������

�� � ���� ������������ ������������

� � ��� ����������� ���
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��� Economic Data

This example uses unemployment data for the United States from ���� to �����

The data consist of monthly statistics over the course of 
� years resulting in 
��

samples which have not been adjusted for seasonality �Herzberg ����	� The initial

identi�cation process using the ACF and PACF points to the possibility of unit roots

at lag � and at lag ��� The Dickey�Fuller procedure �Hamilton ����	 and the Durbin�

Watson procedure �Greene ���
	 con�rm that single unit roots at lag � and �� are

signi�cant possibilities based upon the hypothesized model of a random walk with

drift� After di�erencing at the lags indicated� the result is a zero mean stationary

time series� The Gaussian� causal� and invertible assumption using Splus leads to the

following ARIMA model ��� �� �
���� �� �
�� represented by

��� B
���B��
��� ��B
�
Xt � ��� ���B

��
Zt� ���


The above model was determined based upon the Akaike�s AIC criterion� At this

point� we examine the residuals and determine if they exhibit a Gaussian structure

�Figure �
� It appears that they do not and a �rst approximation of their density

might be the Laplacian distribution� Using this assumption and the non�Gaussian�

�



Table �� Parameter Estimates given Distribution Assumptions for ARIMA model

��� �� �
���� �� �
��� Note� Results given as mean�std�

Laplacian Gaussian

Parameters Estimation Estimation

�� � ������������� �����������
�

��� � ������������� ����������
��

� � ���������� �
��

non�causal� and non�invertible MLE procedure we obtain the parameter estimates in

Table �� The AR coe�cient is not distingushiable from zero and the MA coe�cient is

slightly smaller and still signi�cant� The ARIMA model ��� �� �
���� �� �
�� represented

by

��� B
���B��
Xt � ��� ���B
��
Zt� ���


is the result of using distributional assumptions consistent with the residuals� The

model has been reduced to its most parsimonious form exhibiting yearly correlations

which would be expected of employment data� No attempt was made to examine

other possible models� The procedure outlined above involves �nding the best stan�

dard model using existing methods� examining the residuals� choosing an appropriate

distribution� and then reexamine the results to determine an improvement in the

model to gain additional insights into the process�

��� Other Distributional Considerations

The exponential power distribution is a su�ciently rich family to explore the general

behavior of symmetrical� unimodal distributions� The Normal� Laplacian� and even

Uniform like distributions can be generated from this family� so it might o�er a rea�

sonably rich parametric distribution to examine the e�ects of di�erent assumptions�

This of course does not limit the procedure since any parametric or non�parametric

assumption can be investigated by the algorithm�

The zero mean exponential power distribution has the following form �Box and

Tiao ���
	�

f�y
 �
e����jyj

�
���

��� � ���

�

���

���

�

���


�



Table 
� ARMA���

 Parameter Estimates given Distribution Assumptions� Note�

Results given as mean�std�

Simulated Exp�Power Gaussian

Parameters Estimation Estimation

�� � ��


��� ��
�������
 ����������


�� � �������� ����������� �����������

�� � ��� ���������
� ������������

�� � ����� ����������
� �����������

�� � ��
�� ��
�
����
� �����������

� � � ����������� ���


where 
 � ���� �	� An ARMA���

 using this distribution will be generated having

multiple roots and one in particular that will be reciprocal such as

�� � ��B

�Xt � �� � ���� B
��� ��B


�Zt� �
�


In this case� second order statistics produces a model which is an ARMA����
 having

the following form

�� � ��B
Xt � ��� ��B

�Zt� �
�


As before� the reciprocal root reduces the number of parameters under the normal

assumption� The reason for this can be found in the roots of the polynomial and the

ability to reparameterize using the auto�covariance generating function �Brockwell and

Davis ����	� To illustrate this� a simulated sequence with a sample size of ���� and


 � ����� �� � �

� and �� � �
� produces the speci�c estimates shown by Table 
�

This con�rms the anticipated results exhibited by equation 
� and 
� which matches

the simulated parameter values under the two di�erent assumptions� Table � provides

the covariance matrix which indicates the interrelationships of the parameters under

the power distribution assumption�

�



Table �� ARMA���

 Covariance Matrix using the Non�Gaussian Parameter Estima�

tion Process
�� �� �� �� �� �

�� �������� �������� �����
�� �����
�
 ��������� ��������

�� �������� �������� �����

� �����
�� ��������� ��������

�� �����
�� �����

� �������� ������

� ��������� ���������

�� �����
�
 �����
�� ������

� �������� ��������� ��������

�� ��������� ��������� ��������� ��������� �������� ���������

� �������� �������� ��������� �������� ��������� �����
��

� PROGRAM STRUCTURE AND I�O

��� Using NGMLE

The algorithm described previously has been implemented in FORTRAN ��� Though

a single call to a subroutine is enough to obtain the estimates required� the program

is composed of building blocks which are broken into the following libraries� The user

will be unaware of this except at the time of compilation where the libraries must be

located in the same directory or path� The following is a list of libraries utilized by

the non�Gaussian MLE subroutine �ngmle
�

POPFNC�for Develops the MLE �Lii and Rosenblatt ����	 and

stands for the pop ulation func tion associated

with a popular stochastic maximization technique�

Includes polynomial multiplication and inversion

subroutines�

COVAR�for Calculates the covariance matrix of the unknown

parameters and includes matrix utilities�

SEARCH�for Performs the search of the MLE surface�

Decides which search method to use and

either implements the uniform grid search or

the Simulated Annealing�Genetic Algorithm�

�Holland� ����	��Vanhaarhoven and Aarts ����	

PUBLIC�for Contains the public domain software which

includes a random number generator� polynomial

root �nder and matrix inverter�

��



The driver program must call the non�Gaussian MLE subroutine as described below�

The user must compile the libraries and supply the scaled density function� Here is

a rough outline of how to structure the driver program�

c Dimension all variables including the work

c space variables�

� � �

c Read in data

� � �

c Assign input values for the subroutine call

� � �

call ngmle�nx�x�p�q�etalim�c��c��ndiv�nrep�supsag�rspc�ispc

z�nz�xmle�eta�covvec�stdev�nnzc�

� � �

c Output Results

c Be sure to resolve the covariance vector

c into the covariance matrix properly�

c Refer to the example test drivers�

� � �

The input�output table follows which de�nes the parameters for the subroutine� In

addition� sample calculations are provided for normalizing a distribution and de�ning

the constants required by the program�

��



INPUTS

TYPE VARIABLE COMMENTS

INTEGER NX The actual number in the sequence X�

REAL�array� X The ARMA sequence to be analyzed�

INTEGER P An integer in the ARMA�p�q�

sequence� The AR degree�

INTEGER Q An integer in the ARMA�p�q�

sequence� The MA degree�

REAL ETALIM The lower and upper bounds within which

�� dim array� to search for the coe�cient values�

ETALIM���j�	lower bound of the jth coe�cient�

ETALIM���j�	upper bound of the jth coe�cient�

REAL C� A constant used in the covariance calculations�

REAL C� A constant used in the covariance calculations�

INTEGER NDIV The number of subdivisions per parameter to

sequentially search the MLE surface�

INTEGER NREP The number of repetitions to search the

surface as the search volume is collapsed

about the global maximum� Each collapse

improves the estimates accuracy by �
NDIV�

INTEGER SUPSAG Suppression of the genetic algorithm and

simulated annealing� SUPSAG 	 � suppresses

the stochastic search in favor of the sequential�

REAL�array� RSPC A real work space vector� Its dimension is

�������
��NX
����NP
���NP�NP�

NP	P
Q
� where P�Q� and NX have been

previously de�ned�

COMPLEX�array� CSPC A complex work space vector� Its dimension is

���NP�

INTEGER�array� ISPC A integer work space vector� Its dimension is

����
��NP� where NP has been previously

de�ned�

OUTPUTS

REAL�array� Z The estimated driving sequence

INTEGER NZ The number of components in the

estimated driving sequence vector�

REAL XMLE The non�Gaussian MLE� Refer to equation �����

INTEGER�array� ETA The estimated parameter values�

Refer to equation ����

REAL�array� COVVEC The estimated covariance vector for the

parameter estimates�

REAL�array� STDEV The standard deviation of the

estimated parameters�

INTEGER NNZC The number of non�zero parameters� Refer to

Driver program for an ARMA������ example�

��



��� User Supplied Functions and Constants

The user must supply the probability density of the driving noise process f��z
 �

���f�z���
 in order to calculate the ARMA model parameters from equation ��
�

The two constants c� and c� are utilized for the calculation of the covariance matrix

�equations ��� from Lii and Rosenblatt ����	� The constants have the following form

c� � ��E�
f
�
�

f�
�z

�� �
�


c� � E�z
f
�
�

f�
�z

�� �




Note� The two constants are �xed for the given probability distribution� These are

calculated prior to the analysis if the density is of a suitable parametric form but may

require a two step process if numerical integration is required to obtain the constants

once the scale factor has been found�

To facilitate the discussion of scaling the density and calculating the constants�the

ARMA�����
 example depicted in the driver program will be fully evaluated� This

should be su�cient to allow the user the ability to prescribe any parametric or non�

parametric density function� If the input density function is non�parametric then �c�
and c�
 will have to be calculated numerically�

�	�	� Example to scale the Laplace Density

The Laplacian probability density is normally written as

f�z
 �
�

��
e
�jzj
� � �
�


To scale this function we need to modify z by the appropriate quantity� The standard

deviation of this function is � �
p
��� Therefore� the proper scaling function is

f��z
 �

p
��

�
f�

p
��z

�

 �
�


�
�p
��

e
�
p
�jzj
� � �
�


�




The density supplied by the user becomes

f�z
 �
�p
�
e�

p
�jzj �
�


which in Fortran code would be the following function�

function dnsity�z


dnsity � exp��sqrt����
abs�z

�sqrt����


return

end

The actual calling sequence in the program would be fsigma�dnsity�z�sigma
�sigma�

The probability density function must be speci�ed properly or the results will not be

as intended� The program will search for the best � to maximize the log likelihood�

�	�	� Example Calculation and implementation of c� for the Laplacian

Distribution

c� � ��E�
f
�
�

f�
�z

� �
�


By using a simple technique of taking the derivative of a log� we can manipulate the

above equation for the Laplace distribution by

f
�
�

f�
�z
 �

d

dz
log�f��z

 �
�


which gives

�
d

dz
log�f��z




� �
�

��
� ���


Finding the expectation of this gives the following constant

c� � ��E�
�

��

 ���


� �� ���


��



Table �� Constants utilized in the asymptotic covariance calculations for familiar

distributions
Name c� c�
Laplace � �

Gaussian � 


Student t��
 ���
 ����

Exp Power �
 � �����
 ���� �

�	�	
 Example Calculation and implementation of c� for the Laplacian

Distribution

c� � E�z
f
�
�

f�
�z

� ��



Similarly for this

c� � E�z�
�

��

 ���


� � ���


since the scaled expectation squared is simply the variance of this distribution� Table

� gives various common distribution values for the constants de�ned above�

� PROGRAMMATIC CONSIDERATIONS

��� Restrictions

The root �nding technique �refer to equations ����

 requires that the polynomial

under investigation be the order speci�ed� If the range to search for the last coe�cient

�i�e� �p or �q
 passes exactly through zero thus reducing the order of the polynomial�

then an error will occur� This can be eliminated by making sure that the range and

the corresponding search grid never pass through this point� It is also important to

make sure that the density function is not exactly zero �refer to equation ��
� This

can be mitigated by providing a lower tolerance limit in the user supplied density

function�

No limits have been placed on the number of parameters � or sequence size xt�

However� the procedure has only been utilized with �� parameters and a sequence

size of ���� for testing ARMA processes� The Simulated Annealing and Genetic

Algorithms have been tested indivdually for up to �� parameters and the polynomial

��



root �nder has been tested up to a ���th degree polynomial� This has been adequate

for all the problems we have encountered� If the need arises to go beyond this limit

then the increase in sequence size and the parameter space will increase the computer

time proportionately�

��� Precision

Single Precision is used throughout� The numerical procedures for inverting the

MA polynomial ��B
 is a source of possible error for roots close to the unit circle�

Currently a maximum of ��� coe�cients for L�� � L�� from equation �
 are used in

this procedure which automatically varies according to the position of the roots � The

closer the roots are to the unit radius� the more terms are required in the inverted

polynomial truncation� A tolerance of ���� is utilized for a run of � coe�cients as a

secondary truncation criteria� It is assumed that the sequence has been checked for

unit roots and they are eliminated prior to analysis by this algorithm�

Computational results to � signi�cant places have been obtained on the Sun

sparc �� �� and �� Workstations using di�erent operating systems� The Dec Alpha

A���MP�R also matched these results with the stated accuracy� These have been

compared to Monte�Carlo simulations for low�order ARMA processes which agree

with the numerical results of this algorithm �Breidt et al�� ���� and Lii and Rosenblatt

���������	�

��� Timing

Several techniques are utilized in the searching process due to the multiple local max�

ima in the Likelihood surface� If the number of parameters is small� the program will

use a uniformly distributed grid search procedure to �nd the Global Maximum� If the

number of parameters is large� then stochastic procedures �i�e� simulated annealing

and genetic algorithms
 will be simultaneously executed and compared to locate the

Global Maximum�

The program will automatically choose the technique which will search the pa�

rameter domain in the shortest execution time unless the stochastic methods are

intentionally suppressed� The Sun Sparc stations and the DEC Alpha were used

to determine the optimum mix of deterministic and stochastic search procedures to

speed the examination of the Likelihood surface� If the total MLE computations

NMLE exceeds ������� then the procedure will opt for a stochastic search technique�

This is an ad�hoc number derived from experience for a number of di�erent problems�

The equation which determines the number of computations called for is a product

of the number of subdivisions NDIV of each non�zero parameter

��



NMLE � �NDIV 
NNZC � ���


The number of subdivisions NDIV is controlled by the user whereas the model being

investigated sets the number of non�zero coe�cients toNNZC� To force the stochastic

search the user can arti�cially make the number of subdivisions large enough to

exceed ����� ���

�

NNZC � A �ag has also been included to suppress the stochastic

search methods if only a deterministic search is desired�

In general� by increasing the sequence length� the execution time will be propor�

tionately increased� However� increasing the number of parameters will exponentially

increase the execution time� A tradeo� has been accomplished by using a stochastic

search procedure which permits an e�cient utilization of cpu time thereby making

the increase in parameters a proportional increase in execution time�

��� Additional Comments

Some of the numerical support routines used in implementing this procedure were

obtained from the internet� The three main functions found in the public domain

include a pseudo�random number generator� polynomial root �nder� and a matrix

inverter� They are composed of subroutines and functions which are called by the

program and found in PUBLIC�for identi�ed by the following subroutine names�

SUNIF A psuedo�uniform random number generator used in the stochastic

search procedures� i�e� genetic algorithm�simulated annealing

��������������������������������

NIST Guide to Available Math Software�

Fullsource for module �

 from package TOMS�

Retrieved from NETLIB on Wed Jun 	 �������
 �

��

��������������������������������

ALGORITHM �

� COLLECTED ALGORITHMS

FROM ACM ALGORITHM APPEARED IN

ACM�TRANS� MATH� SOFTWARE�

VOL�
� NO� �� JUN�� �
��� P� ��������

��



RPQR�
 Polynomial root �nder utilized to seperate

roots inside and outside the unit circle�

��������������������������������

BEGIN� PROLOGUE RPQR�


DATE WRITTEN� ���
�� �YYMMDD�

REVISION DATE� ������ �YYMMDD�

CATEGORY NO� F�A�A

KEYWORDS� POLYNOMIAL ROOTS�REAL�ROOTS�

ZEROES�ZEROS

��������������������������������

AUTHOR� VANDEVENDER� W� H�� �SNLA�

PURPOSE� To �nd the zeros of a polynomial with real

coe�cients�

DESCRIPTION� This routine is an interface to an eigenvalue

routine in EISPACK�

This interface was written by Walter H� Vandevender�

ABSTRACT� This routine computes all roots of a polynomial

with real coe�cients by computing the eigenvalues of the

companion matrix�

SPOSV Matrix inversion for the Covariance terms�

��������������������������������

NIST GUIDE TO AVAILABLE MATH

SOFTWARE� FULLSOURCE FOR MODULE SPOSV

FROM PACKAGE LAPACK� RETRIEVED FROM

NETLIB ON TUE JUN �� �������� �

��

���������������������������������

LAPACK DRIVER ROUTINE �VERSION ����

UNIV� OF TENNESSEE� UNIV� OF CALIFORNIA

BERKELEY� NAG LTD��

COURANT INSTITUTE� ARGONNE NATIONAL LAB�

AND RICE UNIVERSITY

MARCH ��� �

�

PURPOSE

SPOSV COMPUTES THE SOLUTION TO A REAL SYSTEM

OF LINEAR EQUATIONS

A � X � B�

WHERE A IS AN N�BY�N SYMMETRIC POSITIVE

DEFINITE MATRIX AND X AND B

ARE N�BY�NRHS MATRICES�

��



There is a typographical error in the paper de�ning the covariance matrix found

in Table � of Lii and Rosenblatt� ����� The �th term in the table should be

�u�v �
X

j

	
�
j�u


�
j�v�p�r�� ���


In addition� our de�nition of all the ARMA polynomials �� and �
 utilizes a positive

sign convention which changes the sign of the ��th and ��th terms in the same

Table �Table � of Lii and Rosenblatt� ����
� With these three modi�cations a direct

comparison of the code and the equations in the table may be made since the equations

and the code have the same lexicographical characteristics� A modi�cation has also

been made in the parameterization of the model results� The MLE parameterization

utilized ��� ��� �� and ��� To obtain the � and � parameterization required the

development of the Jacobian to produce the �nal results� This has been implemented

by the covariance library functions� Only an interested user comparing the code with

the referenced papers need be aware of these di�erences�
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